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The phenomenology of the glass transition

▶ Dramatic slowing down of the microscopic dynamics of a liquid upon cooling.

▶ The conventional glass is an out-of-equilibrium system.

[Guiselin, Tarjus, Berthier (2022)]
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Distinguish a glass from a liquid with naked eyes?

Try to guess which one is a glass sample.
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Distinguish a glass from a liquid with naked eyes?

The answer is hard to tell with naked eyes.

τα ≃ 3.1018 years ≫ Age of the Universe. τα ≃ 3 µs.
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Distinguish a glass from a liquid with naked eyes?

▶ Very weak structural changes while the dynamics varies a lot.

▶ The density field ρ(x) and its fluctuations [e.g., g(r)] are boring spectators of the
glass transition.

Is the glass transition a purely dynamic phenomenon or is it somehow related to
structural/thermodynamic changes?
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The Kauzmann entropy crisis (1948)

▶ Kauzmann measured the excess entropy in the supercooled regime:
∆S(T ) = Sliq(T ) − Sxtal(T ) ≃ Sliq(T ) − Svib(T ) ≃ Sconf(T ).

▶ ∆S quantifies the number of independent density profiles in the liquid state.

[Kauzmann (1948)]
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The ideal glass state

▶ Experimental data are consistent with an equilibrium phase transition between the
liquid phase and the ideal glass phase at the Kauzmann temperature TK < Tg.

What are the order parameter, the ordering field and the Landau free energy of this
putative phase transition?
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p-spin models

▶ Usual starting point to study phase transitions: the mean-field theory.

▶ Detour via the theory of fully-connected spin systems with p-body random
interactions (p ≥ 3) [Kirkpatrick, Thirumalai, Wolynes (late 80’s)].

▶ Everything can be computed exactly: the statics [Crisanti, Sommers (1992)] and the
dynamics [Crisanti, Horner, Sommers (1993)].
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Reminders of phase transitions in mean-field: the Curie-Weiss model

▶ The Curie-Weiss model is the mean-field (long-range) formulation of the Ising
model:

H(C) = − 1
N

N∑
i,j=1
i<j

SiSj .

▶ Order parameter: intensive state variable to distinguish the two phases.
▶ Landau free energy: free energy cost to force the system to have a prescribed

value of the order parameter.
▶ Landau free energy = large deviation rate function of the order parameter

probability distribution P(M).
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Reminders of phase transitions in mean-field: the Curie-Weiss model
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Reminders of phase transitions in mean-field: the Curie-Weiss model

▶ Couple the order parameter to an external field.
H(C) → H(C) − NhM(C)
F (M) → F (M) − hM

P(M) → P(M) eNβhM

.
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▶ Ordering field: external field h which breaks the spontaneous symmetry breaking
below Tc.
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The overlap order parameter

▶ Sconf(T ) −→
T →TK

0: the number of states the system can visit under equilibrium
conditions decreases.

▶ T < TK: equilibrium configurations are similar (but still disordered).

▶ Order parameter for the liquid-to-glass transition:

1. pick at random an equilibrium configuration C0 (reference configuration),

2. take a second equilibrium configuration C,

3. measure their overlap or the degree of similarity of their magnetization/density
profiles.

▶ The overlap involves two copies/replicas of the same system.
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The overlap order parameter

0
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The overlap order parameter

0

▶ For T > TK, exponentially large number of density profiles (liquid phase):
⟨Q(C, C0)⟩ ≃ 0.
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The overlap order parameter

0

▶ For T < TK, small number of density profiles (ideal glass phase): finite probability
to have Q(C, C0) ≃ 1.
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The Franz-Parisi potential

▶ The Landau free energy for overlap fluctuations is the Franz-Parisi potential V (Q)
[Franz, Parisi (1995)].

▶ The free energy should be self-averaging with respect to the reference
configuration (quenched disorder).
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The Franz-Parisi potential

▶ The way the system explores the configuration space is encapsulated in the
temperature evolution of V (Q) [Parisi, Urbani, Zamponi (2020)].
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The ϵ-coupling

▶ Couple the overlap to an external field ϵ to promote large overlap values.

▶ Attraction towards the reference configuration in the configuration space.
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The ϵ-coupling

▶ Phase diagram (T , ϵ) which describes the entire thermodynamics of glassy
systems [Franz, Parisi (1997)].

▶ First-order phase transition for ϵ = ϵ∗(T ).

▶ Energy gain to overcome the entropic cost to be localised close to the reference
configuration (practical way of measuring Sconf): ϵ∗(T ) = T Sconf(T ).

▶ Critical point in the universality class of the random-field Ising model.
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The overlap for supercooled liquids in finite dimensions

▶ For off-lattice systems, one cannot just compare the density profiles:

ρ(x) =
N∑

i=1

δ(x − ri).

x

ρ(x)

▶ The definition of the overlap requires coarse-graining on a typical length scale a:

Q(C, C0) = 1
N

N∑
i=1

N∑
j=1

w

(
|ri − r

(0)
j |

a

)
.

▶ Typically, a is a fraction of particle diameter to account for thermal vibrations
(about 0.2-0.3) [Guiselin, Tarjus, Berthier (2020)].

▶ The function w(x) decays on a typical scale of order 1 [e.g., w(x) = e−x4 ln(2)].
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The Franz-Parisi potential for supercooled liquids in finite dimensions

▶ Analytic calculations are an uncomplete formidable task beyond mean-field.

▶ Even though Sconf is not well-defined beyond mean-field, V (Q) and phase
transitions in the (T , ϵ) are still sharply defined.

▶ One can still define a proxy for the configurational entropy ϵ∗(T ) = T Sconf(T ).
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Measuring the Franz-Parisi potential in computer simulations

▶ Simulations to measure Q and its probability distribution P(Q) ∝ e−NβV (Q).

▶ Order of magnitude for Q ≃ 1:
▶ Measuring V (Q) requires to sample very rare events:
▶ Bias the simulation to visit very unlikely overlap fluctuations in a controlled way

to recover the unbiased overlap probability distribution.
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Measuring the Franz-Parisi potential via Umbrella Sampling

▶ Different ways of biasing the simulation: umbrella sampling [Berthier (2013), Parisi, Seoane

(2014), Guiselin, Tarjus, Berthier (2022)], Wang-Landau [Nishikawa, Hukushima (2020)], etc.

▶ Bias the Hamiltonian of MD/MC simulations for a fixed reference configuration
C0:

H(C) → H(C) + 1
2Nκ [Q(C, C0) − Q0]2 = H(C) + W(Q(C, C0)).

▶ Control κ and Q0 to visit any value of the overlap, and measure the biased
overlap distribution PW(Q).
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Bypassing sluggishness

▶ Simulations may become slow at low temperatures/high Q0.

▶ More sophisticated MC moves to explore more efficiently the configuration space.

▶ Swap MC: exchange the positions of two particles taken at random respecting
detailed balance [Ninarello, Berthier, Coslovich (2017)].

▶ Parallel tempering: running n simulations in parallel with different biases Wi

(increasing values of Q0) and exchanging the configurations of neighbouring Wi

respecting detailed balance [Hukushima, Nemoto (1996)].
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Combining the biased distributions

▶ How to reconstruct the unbiased distribution P(Q)?

▶ Biased Hamiltonian + thermal equilibrium:{
H(C) → H(C) + W(Q(C, C0))
P(Q) → PW(Q) ∝ P(Q)e−βW(Q) .

▶ The curves PW(Q)eβW(Q) ∝ P(Q) should collapse on a master curve.
▶ First possibility: translate the curves in logarthmic scale by hand.
▶ Reconstruct the probability up to 10−180 → very rare events.
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Combining the biased distributions

▶ Second possibility: use the multiple histogram method [Ferrenberg, Swendsen (1989),

Newman, Barkema (1999)].

▶ Estimate of the probability distribution P(Q) from the n biased PWi (Q)
(i = 1, . . . , n) which minimizes the global error:


P(Q) =

∑n

i=1 PWi (Q)∑n

i=1 e−βWi(Q)/Zi

, with PWi (Q) = 1
Zi

P(Q)e−βWi(Q),

Zi =
∫ 1

0
dQ

∑n

j=1 PWj (Q)∑n

j=1 eβ[Wi(Q)−Wj (Q)]/Zj

(to be solved self-consistently)

.

▶ Other possibility: Gaussian ensemble [Challa, Hetherington (1988)].

▶ Divide and Conquer strategy.
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Measuring the (T , ϵ) phase diagram (without further simulations)

▶ One can compute the overlap probability distribution in the presence of a field ϵ
without further simulations:

Pϵ(Q) = P(Q)eNβϵQ∫ 1

0
dQ′ P(Q′)eNβϵQ′

.
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Temperature evolution of V (Q) in finite-dimensional systems

▶ Eventually, one needs to repeat the entire procedure to average over several
reference configurations, and at several temperatures.

0

0.2

0.4

0.6

0 0.2 0.4 0.6 0.8

V
(Q

)

Q

[Guiselin, Berthier, Tarjus (2022)]

▶ Total CPU time:

30 simulations × 20 reference configurations × 6 temperatures × 4 system sizes
≃ 276 years for 1 CPU.
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Consistent with an underlying
equilibrium phase transition.

▶ Total CPU time −→ doable with few hundreds of CPUs (1 PhD ≃ 3 years).

30 simulations × 20 reference configurations × 6 temperatures × 4 system sizes
≃ 276 years for 1 CPU.
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The (T , ϵ) phase diagram in finite-dimensional systems

▶ Measurement of the (T , ϵ) phase diagram in 2d/3d in the thermodynamic limit
(Finite-Size-Scaling analysis).

▶ Close to a critical point, the correlation length diverges:
▶ In a finite-size system, the correlation length saturates to the linear size L of the

system.

▶ In the vicinity of the critical point, all thermodynamic quantities now depend on
L:
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T →Tc

+∞.

▶ In a finite-size system, the correlation length saturates to the linear size L of the
system.

▶ In the vicinity of the critical point, all thermodynamic quantities now depend on
L:

χ = ∂⟨Q⟩
∂ϵ

= Nβ
[
⟨Q2⟩ − ⟨Q⟩2] ∼ L2−η.
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The (T , ϵ) phase diagram in finite-dimensional systems
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[Guiselin, Berthier, Tarjus (2020), Guiselin, Berthier, Tarjus (2022)]

▶ Random-Field Ising model criticality (lower critical dimension = 2).
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The configurational entropy in finite-dimensional systems

Berthier, Charbonneau, Coslovich, Ninarello, Ozawa, Yaida (2017)

▶ Simulations data in 3d are consistent with a Kauzmann transition at TK > 0.
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Overlap-related measurements in experiments

▶ Overlap measurements require to know the location of all microscopic
constituants → restricted to colloidal glasses.

▶ One can imagine measuring the (ϕ, ϵ) phase diagram (ϕ: packing fraction) with
optical tweezers.

▶ But low degree of supercooling: the glassy slowing down in colloids is only about
6 orders of magnitude.
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The point-to-set length

▶ Liquid-glass equilibrium phase transition: long-range order emerging at TK.
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The point-to-set length

▶ Liquid-glass equilibrium phase transition: long-range order emerging at TK.

▶ Analogy with ferromagnetism:
♦ Imhomogeneous magnetization profile M(C, x).

♦ The order parameter is correlated on a length scale ξ −→
T →T +

c

+∞.

♦ Cavity argument with frozen spins on the boundaries:

L < ξ L > ξ

M(C, x)|x∈∂V = 1

⟨M(C, 0)⟩ = 1 ⟨M(C, 0)⟩ = 0
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The point-to-set length

▶ Liquid-glass equilibrium phase transition: long-range order emerging at TK.

▶ Definition of the point-to-set length ξPTS:

♦ Imhomogeneous overlap profile Q(C, C0, x).

♦ The order parameter is correlated on a length scale ξPTS −→
T →T +

K

+∞.

♦ Cavity argument with frozen particles on the boundaries [Bouchaud, Biroli (2004)]:
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Measurements of the point-to-set length

▶ The point-to-set length can be measured via the measurement of overlap
fluctuations in cavities.

▶ Computer simulations [Biroli, Bouchaud, Cavagna, Grigera, Verrocchio (2008), Berthier, Charbonneau, Yaida

(2016)].

▶ Experiments with colloids using optical tweezers [Nagamanasa, Gokhale, Sood, Ganapathy

(2015)].

▶ But still impossible for atomic and molecular glasses.
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The mosaic state

▶ For timescales ≲ τα, particles are almost frozen → self-induced frozen boundaries.

▶ Supercooled liquids are mosaics of “glassites” of different density profiles of size
ξPTS [Kirkpatrick, Thirumalai, Wolynes (1989)].

▶ Each glassite relaxes independently on a typical timescale τα.

(This is a cartoon!)
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Probing the mosaic state in atomic and molecular glasses

▶ Liquid of anisotropic molecules in the presence of an oscillatory electric field E at
an angular frequency ω ∼ 1/τα [Bouchaud, Biroli (2005)].

Molecule of glycerol.

▶ Each glassite responds collectively with a typical induced dipolar moment
pg = µdip (ξPTS/ℓ)d/2 (random orientations):

pg =
∑

i∈glassite

pi =⇒


⟨pg⟩ = 0

⟨p2
g⟩ ≃

∑
i∈glassite

p2
i =

(
ξPTS

ℓ

)d

µ2
dip

.

25 / 26



Probing the mosaic state in atomic and molecular glasses

▶ Liquid of anisotropic molecules in the presence of an oscillatory electric field E at
an angular frequency ω ∼ 1/τα [Bouchaud, Biroli (2005)].

Molecule of glycerol.

▶ Each glassite responds collectively with a typical induced dipolar moment
pg = µdip (ξPTS/ℓ)d/2 (random orientations):

pg =
∑

i∈glassite

pi =⇒


⟨pg⟩ = 0

⟨p2
g⟩ ≃

∑
i∈glassite

p2
i =

(
ξPTS

ℓ

)d

µ2
dip

.

25 / 26



Probing the mosaic state in atomic and molecular glasses

▶ Liquid of anisotropic molecules in the presence of an oscillatory electric field E at
an angular frequency ω ∼ 1/τα [Bouchaud, Biroli (2005)].

Molecule of glycerol.

▶ Each glassite responds collectively with a typical induced dipolar moment
pg = µdip (ξPTS/ℓ)d/2 (random orientations):

pg =
∑

i∈glassite

pi =⇒


⟨pg⟩ = 0

⟨p2
g⟩ ≃

∑
i∈glassite

p2
i =

(
ξPTS

ℓ

)d

µ2
dip

.

25 / 26



Probing the mosaic state in atomic and molecular glasses

▶ Total dipole density of a sample:

P = pg

(ξPTS/ℓ)d
F
(

pgE

kBT

)
= µdip

(
ξPTS

ℓ

)−d/2
F
(

µdip(ξPTS/ℓ)d/2E

kBT

)
.

▶ Total dielectric susceptibilities χ(k) ∝ ∂kP

∂Ek
:

▶ The linear susceptibility remains finite at TK (fluctuation-dissipation theorem),
but non-linear susceptibilities should diverge.
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Probing the mosaic state in atomic and molecular glasses

[Brun, Ladieu, L’Hote, Tarzia, Biroli, Bouchaud (2011)]
[Albert, Bauer, Michl, Biroli, Bouchaud, Loidl, Lunkenheimer,

Tourbot, Wiertel-Gasquet, Ladieu (2016)]

▶ Experiments and simulations report a modest increase in ξPTS by a factor of 2.
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Conclusions

▶ Static overlap fluctuations allow to probe the structure of the configuration space
(free energy landscape).

▶ Well-defined (but not straightforward) strategies to study these fluctuations in
simulations and experiments.

▶ Glass transition: overlap fluctuations reveal an underlying equilibrium phase
transition towards an ideal glass phase at TK.

▶ The overlap is a good static descriptor of the configuration space for disordered
complex systems in general (not only glasses).
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