Demystifying the overlap order parameter in
glass-forming liquids
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The phenomenology of the glass transition

» Dramatic slowing down of the microscopic dynamics of a liquid upon cooling.

» The conventional glass is an out-of-equilibrium system.
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I Distinguish a glass from a liquid with naked eyes?

Try to guess which one is a glass sample.
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I Distinguish a glass from a liquid with naked eyes?

The answer is hard to tell with naked eyes.
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I Distinguish a glass from a liquid with naked eyes?
» Very weak structural changes while the dynamics varies a lot.

» The density field p(x) and its fluctuations [e.g., g(r)] are boring spectators of the
glass transition.

Is the glass transition a purely dynamic phenomenon or is it somehow related to
structural /thermodynamic changes?
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I The Kauzmann entropy crisis (1948)

» Kauzmann measured the excess entropy in the supercooled regime:
AS(T) = Siq(T) = Sxsai(T) = Siq(T) — Svin(T) = Scont(T).
» AS quantifies the number of independent density profiles in the liquid state.
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The ideal glass state
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The ideal glass state
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» Experimental data are consistent with an equilibrium phase transition between the
liquid phase and the ideal glass phase at the Kauzmann temperature Tx < Tj.

5/26



The ideal glass state
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» Experimental data are consistent with an equilibrium phase transition between the
liquid phase and the ideal glass phase at the Kauzmann temperature Tx < Tj.

What are the order parameter, the ordering field and the Landau free energy of this
putative phase transition?
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I p-spin models

» Usual starting point to study phase transitions: the mean-field theory.
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I p-spin models

» Usual starting point to study phase transitions: the mean-field theory.
» Detour via the theory of fully-connected spin systems with p-body random
interactions (p > 3) [Kirkpatrick, Thirumalai, Wolynes (late 80's)].
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p-spin models

» Usual starting point to study phase transitions: the mean-field theory.

» Detour via the theory of fully-connected spin systems with p-body random
interactions (p > 3) [Kirkpatrick, Thirumalai, Wolynes (late 80's)].
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(spherical 3-spin model)

» Everything can be computed exactly: the statics [Crisanti, Sommers (1992)] and the
dynamics [Crisanti, Horner, Sommers (1993)].
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I Reminders of phase transitions in mean-field: the Curie-Weiss model

» The Curie-Weiss model is the mean-field (long-range) formulation of the Ising
model:
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model:
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» Order parameter: intensive state variable to distinguish the two phases.
1 &
M) = z; S;.

» Landau free energy: free energy cost to force the system to have a prescribed
value of the order parameter.
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I Reminders of phase transitions in mean-field: the Curie-Weiss model

» The Curie-Weiss model is the mean-field (long-range) formulation of the Ising
model:

» Order parameter: intensive state variable to distinguish the two phases.
1 N
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» Landau free energy: free energy cost to force the system to have a prescribed
value of the order parameter.
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I Reminders of phase transitions in mean-field: the Curie-Weiss model

» The Curie-Weiss model is the mean-field (long-range) formulation of the Ising
model:

» Order parameter: intensive state variable to distinguish the two phases.
1 &
M) = z; S..

» Landau free energy: free energy cost to force the system to have a prescribed
value of the order parameter.
1 e~ BH(C)

F(M) = =550 [ > =5—0(M = M(C))
C

» Landau free energy = large deviation rate function of the order parameter
probability distribution P(M).

_ 1

F(M) = NBInP(M) —  P(M)x e NFOD,
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I Reminders of phase transitions in mean-field: the Curie-Weiss model
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I Reminders of phase transitions in mean-field: the Curie-Weiss model

» Couple the order parameter to an external field.

H(C) = H(C) — NhM(C)
F(M) — F(M) — hM
P(M) — P(M) NArM

—0.05

—0.1!

» Ordering field: external field h which breaks the spontaneous symmetry breaking

below T¢.
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I The overlap order parameter

» Scont(T) o 0: the number of states the system can visit under equilibrium
—IK
conditions decreases.

» T < Tk: equilibrium configurations are similar (but still disordered).

» Order parameter for the liquid-to-glass transition:
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1. pick at random an equilibrium configuration Cy (reference configuration),
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The overlap order parameter

» Scont(T)) —> 0: the number of states the system can visit under equilibrium
T—Tk

conditions decreases.
» T < Tk: equilibrium configurations are similar (but still disordered).
» Order parameter for the liquid-to-glass transition:
1. pick at random an equilibrium configuration Co (reference configuration),

2. take a second equilibrium configuration C,

3. measure their overlap or the degree of similarity of their magnetization /density
profiles.

Q(C,Co) = Z 55,

(spherical p-spin model)

» The overlap involves two copies/replicas of the same system.
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I The overlap order parameter
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I The overlap order parameter
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I The overlap order parameter
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I The overlap order parameter
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» For 7" > Ti, exponentially large number of density profiles (liquid phase):
(Q(C,Co)) ~ 0.
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I The overlap order parameter

» For 7" < T, small number of density profiles (ideal glass phase): finite probability
to have Q(C,Co) ~ 1.
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I The Franz-Parisi potential

» The Landau free energy for overlap fluctuations is the Franz-Parisi potential V(@)
[Franz, Parisi (1995)].
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I The Franz-Parisi potential

» The Landau free energy for overlap fluctuations is the Franz-Parisi potential V(@)
[Franz, Parisi (1995)].
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» The Landau free energy for overlap fluctuations is the Franz-Parisi potential V(@)
[Franz, Parisi (1995)].
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I The Franz-Parisi potential

» The Landau free energy for overlap fluctuations is the Franz-Parisi potential V(@)
[Franz, Parisi (1995)].

,—BH(Co) e PH(C)
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C

Co

» The free energy should be self-averaging with respect to the reference
configuration (quenched disorder).
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I The Franz-Parisi potential

» The Landau free energy for overlap fluctuations is the Franz-Parisi potential V(Q)
[Franz, Parisi (1995)].

e~ BH(Co) e~ BH(C)
V(Q) = Z —z { [Z z (@ -Q(C, Co)] }

Co

» The free energy should be self-averaging with respect to the reference
configuration (quenched disorder).
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I The Franz-Parisi potential

» The Landau free energy for overlap fluctuations is the Franz-Parisi potential V(Q)
[Franz, Parisi (1995)].

e~ BH(Co)

o~ AH(C)
V(Q) = Z —z {_NLB In lzc: 75@ - Q(QCO)] }

Co

» The free energy should be self-averaging with respect to the reference
configuration (quenched disorder).
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I The Franz-Parisi potential

» The Landau free energy for overlap fluctuations is the Franz-Parisi potential V(Q)
[Franz, Parisi (1995)].

e~ BH(Co)
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V(Q) = Z —z {_NLB In lzc: 75@ - Q(QCO)] }
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» The free energy should be self-averaging with respect to the reference
configuration (quenched disorder).
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I The Franz-Parisi potential

» The way the system explores the configuration space is encapsulated in the
temperature evolution of V(Q) [Parisi, Urbani, Zamponi (2020)].

9/26



I The Franz-Parisi potential

» The way the system explores the configuration space is encapsulated in the
temperature evolution of V(Q) [Parisi, Urbani, Zamponi (2020)].

T T T T T T T
0.03F .
50020 .
=
0.01F .
% 0.2 0.4 0.6 0.8
Q
c
.0
"c:u o
S5 ®
a0 O
= un
[
o
)

9/26



I The Franz-Parisi potential

» The way the system explores the configuration space is encapsulated in the
temperature evolution of V(Q) [Parisi, Urbani, Zamponi (2020)].
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I The Franz-Parisi potential

» The way the system explores the configuration space is encapsulated in the
temperature evolution of V(Q) [Parisi, Urbani, Zamponi (2020)].
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The e-coupling

» Couple the overlap to an external field € to promote large overlap values.
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I The e-coupling
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I The e-coupling

» Couple the overlap to an external field € to promote large overlap values.

H(C) — H(C) — NeQ(C, Co)
V(Q) = V(Q) —eQ
P(Q) = P(Q) @

N N N
= > TianSiSiSk = = Y JunSiSiSk— Y eSS,
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(spherical 3-spin model)
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I The e-coupling

» Couple the overlap to an external field ¢ to promote large overlap values.

H(C) — H(C) — NeQ(C, Co)
V(Q) = VI(Q) —eQ
P(Q) = P(Q) P

N N N
— Z JiijiSjSk — — Z JiijiSjSk — Z ESi(O)Si.
i,5,k=1 i,5,k=1 i=1
i<j<k i<j<k

(spherical 3-spin model)

» Attraction towards the reference configuration in the configuration space.

.é...
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I The e-coupling

» Phase diagram (7', ¢) which describes the entire thermodynamics of glassy
systems [Franz, Parisi (1997)].
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» First-order phase transition for e = €*(T).
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I The e-coupling

» Phase diagram (7', €) which describes the entire thermodynamics of glassy
systems [Franz, Parisi (1997)].
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» First-order phase transition for e = €*(T).

» Energy gain to overcome the entropic cost to be localised close to the reference
configuration (practical way of measuring Scont): € (T) = T'Scont(T).
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I The e-coupling

» Phase diagram (7', €) which describes the entire thermodynamics of glassy
systems [Franz, Parisi (1997)].
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» First-order phase transition for e = €*(T).

» Energy gain to overcome the entropic cost to be localised close to the reference
configuration (practical way of measuring Scont): € (T) = T'Scont(T).

» Critical point in the universality class of the random-field Ising model.
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I The overlap for supercooled liquids in finite dimensions

» For off-lattice systems, one cannot just compare the density profiles:

plx)=> 5@ —mr).
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Q(C,C) = 1.
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I The overlap for supercooled liquids in finite dimensions

» For off-lattice systems, one cannot just compare the density profiles:
N
plw) = b — o).
i=1

p(z

)
H H H H H H Q(C,Co) =0.
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I The overlap for supercooled liquids in finite dimensions

» For off-lattice systems, one cannot just compare the density profiles:

= Zé(az — 7).

Q(C,Co) ~1
T

» The definition of the overlap requires coarse-graining on a typical length scale a:

SIS o o <“""“'>.

=1 j=1
» Typically, a is a fraction of particle diameter to account for thermal vibrations
(about 0.2-0.3) [Guiselin, Tarjus, Berthier (2020)].

» The function w(x) decays on a typical scale of order 1 [e.g., w(z) = e ()1,
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I The Franz-Parisi potential for supercooled liquids in finite dimensions

» Analytic calculations are an uncomplete formidable task beyond mean-field.

» Even though Scons is not well-defined beyond mean-field, V' (()) and phase
transitions in the (7', €) are still sharply defined.
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I The Franz-Parisi potential for supercooled liquids in finite dimensions

» Analytic calculations are an uncomplete formidable task beyond mean-field.

» Even though Scons is not well-defined beyond mean-field, V' (()) and phase
transitions in the (7', €) are still sharply defined.

Mean-field theory.
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Putative results in finite
dimensions.
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I The Franz-Parisi potential for supercooled liquids in finite dimensions

» Analytic calculations are an uncomplete formidable task beyond mean-field.

» Even though Scons is not well-defined beyond mean-field, V' (()) and phase
transitions in the (7', €) are still sharply defined.

Putative results in finite
dimensions.

— Convexity is restored via
phase-separation.

» One can still define a proxy for the configurational entropy €*(T") = T'Scont (7).
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I Measuring the Franz-Parisi potential in computer simulations

» Simulations to measure Q and its probability distribution P(Q) oc e NAV(@),
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I Measuring the Franz-Parisi potential in computer simulations
» Simulations to measure Q and its probability distribution P(Q) oc e NAV(@),
» Order of magnitude for Q ~ 1:
BV(Q)~1, N~300 = PQ)~e*~i0 ",

» Measuring V(Q) requires to sample very rare events:

120

10° MD steps/week =  Simulation of 10"~ years > Age of the Universe.

» Bias the simulation to visit very unlikely overlap fluctuations in a controlled way
to recover the unbiased overlap probability distribution.
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I Measuring the Franz-Parisi potential via Umbrella Sampling

» Different ways of biasing the simulation: umbrella sampling [Berthier (2013), Parisi, Seoane
(2014), Guiselin, Tarjus, Berthier (2022)], Wang-Landau [Nishikawa, Hukushima (2020)], etc.

» Bias the Hamiltonian of MD/MC simulations for a fixed reference configuration

Co:
H(C) — H(C) + 3 NR[Q(C,Co) — Qof* = H(C) + W(Q(C, o).

» Control k and Qo to visit any value of the overlap, and measure the biased
overlap distribution Py (Q).
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I Measuring the Franz-Parisi potential via Umbrella Sampling

» Different ways of biasing the simulation: umbrella sampling [Berthier (2013), Parisi, Seoane
(2014), Guiselin, Tarjus, Berthier (2022)], Wang-Landau [Nishikawa, Hukushima (2020)], etc.

» Bias the Hamiltonian of MD/MC simulations for a fixed reference configuration
C()I

1
H(C) = H(C) + 5N&[Q(C, Co) — Qo]” = H(C) + W(Q(C, o))
» Control xk and Qo to visit any value of the overlap, and measure the biased
overlap distribution Py (Q).
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I Bypassing sluggishness

» Simulations may become slow at low temperatures/high Qo.

» More sophisticated MC moves to explore more efficiently the configuration space.
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I Bypassing sluggishness

» Simulations may become slow at low temperatures/high Qo.
» More sophisticated MC moves to explore more efficiently the configuration space.

» Swap MC: exchange the positions of two particles taken at random respecting
detailed balance [Ninarello, Berthier, Coslovich (2017)].
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I Bypassing sluggishness

» Simulations may become slow at low temperatures/high Qo.
» More sophisticated MC moves to explore more efficiently the configuration space.

» Swap MC: exchange the positions of two particles taken at random respecting
detailed balance [Ninarello, Berthier, Coslovich (2017)].
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Bypassing sluggishness

» Simulations may become slow at low temperatures/high Qo.
» More sophisticated MC moves to explore more efficiently the configuration space.

» Swap MC: exchange the positions of two particles taken at random respecting
detailed balance [Ninarello, Berthier, Coslovich (2017)].

1012, N T N T T T T T T T T T T T T ld
fno swap = s
OQ ofe 107 swap SN
.O.O — @O0 108 ‘ -
O O ) ]
=gl !
¢ Requires systems with a high 10 3 o 4
degree of polydispersity. 1025 v .
¢ Speedup of 8 orders of 100g.._,—-v Ty 4
magnitude at Tg. 10_2' . L
2 16 18

» Parallel tempering: running n simulations in parallel with different biases W;
(increasing values of Qo) and exchanging the configurations of neighbouring W
respecting detailed balance [Hukushima, Nemoto (1996)].
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I Combining the biased distributions

» How to reconstruct the unbiased distribution P(Q)?

» Biased Hamiltonian + thermal equilibrium:

{H(C) — H(C) + W(Q(C,Co))
P(Q) = Pw(Q) x P(Q)e” V@
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I Combining the biased distributions

» How to reconstruct the unbiased distribution P(Q)?

» Biased Hamiltonian + thermal equilibrium:

{H(C) — H(C) + W(Q(C,Co))
P(Q) = Pw(Q) x P(Q)e” V@

» The curves Py (Q)e®Y (@ o« P(Q) should collapse on a master curve.

First possibility: translate the curves in logarthmic scale by hand.
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» Reconstruct the probability up to 107 '8°
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—> very rare events.
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I Combining the biased distributions

» Second possibility: use the multiple histogram method [Ferrenberg, Swendsen (1989),
Newman, Barkema (1999)].

» Estimate of the probability distribution P(Q) from the n biased Py, (Q)
(¢=1, ..., n) which minimizes the global error:

Zi:l Pw, (Q) with Py, (Q) = i.173(62)6—/131/\71@?)7

P(Q) = Z:Zl @*BW'L(Q)/Zl ) Zz

E?:l PWj (Q)

1
Ziz/ dQ == — >
0 T @@l

(to be solved self-consistently)
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» Other possibility: Gaussian ensemble [Chalia, Hetherington (1988)].

16/26



I Combining the biased distributions

» Second possibility: use the multiple histogram method [Ferrenberg, Swendsen (1989),
Newman, Barkema (1999)].

» Estimate of the probability distribution P(Q) from the n biased Py, (Q)
(¢=1, ..., n) which minimizes the global error:

Zi:l Pw, (Q) with Py, (Q) = i.173(62)6—/131/\71@?)7

P(Q) = Z:Zl @*BW'L(Q)/Zl ) Zz

E?:l PWj (Q)

1
Ziz/ dQ == — >
0 T @@l

(to be solved self-consistently)

» Other possibility: Gaussian ensemble [Chalia, Hetherington (1988)].

» Divide and Conquer strategy.
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I Measuring the (7', €) phase diagram (without further simulations)

» One can compute the overlap probability distribution in the presence of a field ¢
without further simulations:

P(Q)eN?<C
/ dQ' ,P(Q/)eN/BeQ’
0

Pé (Q) =
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I Measuring the (7', €) phase diagram (without further simulations)

» One can compute the overlap probability distribution in the presence of a field ¢
without further simulations:
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I Temperature evolution of V(Q) in finite-dimensional systems

» Eventually, one needs to repeat the entire procedure to average over several
reference configurations, and at several temperatures.

[Guiselin, Berthier, Tarjus (2022)]

» Total CPU time:

30 simulations x 20 reference configurations x 6 temperatures X 4 system sizes
~ 276 years for 1 CPU.
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I Temperature evolution of V(Q) in finite-dimensional systems

» Eventually, one needs to repeat the entire procedure to average over several
reference configurations, and at several temperatures.

[Guiselin, Berthier, Tarjus (2022)]

Consistent with an underlying
equilibrium phase transition.

» Total CPU time — doable with few hundreds of CPUs (1 PhD ~ 3 years).

30 simulations x 20 reference configurations x 6 temperatures X 4 system sizes
~ 276 years for 1 CPU.
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I The (T, €) phase diagram in finite-dimensional systems

» Measurement of the (7', €) phase diagram in 2d/3d in the thermodynamic limit
(Finite-Size-Scaling analysis).
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I The (7', €) phase diagram in finite-dimensional systems

» Measurement of the (7', €) phase diagram in 2d/3d in the thermodynamic limit
(Finite-Size-Scaling analysis).

» Close to a critical point, the correlation length diverges:

£~ (T=T)™" — +oo.

T—Te

» In a finite-size system, the correlation length saturates to the linear size L of the
system.

» In the vicinity of the critical point, all thermodynamic quantities now depend on
L:
9(Q)

x= S5t = NB[(QY) — (@] ~ L*".
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The (T, €) phase diagram in finite-dimensional systems

Al i d=2
0 d=3 ,'n 0.2F =
I“ /’
low-Q . r .
0.3+ o’ - 015 el |
. ’ 0
©" high-Q o’
a v
&So.2f 8 1 Soat . 1

a
/ﬂ ) S :
o
0.1F B 0.05 F 4

[Guiselin, Berthier, Tarjus (2020), Guiselin, Berthier, Tarjus (2022)]

» Random-Field Ising model criticality (lower critical dimension = 2).
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The configurational entropy in finite-dimensional systems

Configurational entropy

» Simulations data in 3d are consistent with a Kauzmann transition at Tx > 0.

&/ Eprs —m—

32
(& / Epre)™® —&=
Stot™Svib —®—

€" (Qhigh"Quow) —v—
V(Qyigh)-V(Qiow) —4—

Z=277

Z-332 ; Z, \L Z, l

0 001 002 003 004 005  0.06
Inverse reduced pressure, 1/Z = pkgT/P

Berthier, Charbonneau, Coslovich, Ninarello, Ozawa, Yaida (2017)
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Overlap-related measurements in experiments

» Overlap measurements require to know the location of all microscopic
constituants — restricted to colloidal glasses.

» One can imagine measuring the (¢, €) phase diagram (¢: packing fraction) with
optical tweezers.
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Overlap-related measurements in experiments

» Overlap measurements require to know the location of all microscopic
constituants — restricted to colloidal glasses.

» One can imagine measuring the (¢, €) phase diagram (¢: packing fraction) with
optical tweezers.
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™
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» But low degree of supercooling: the glassy slowing down in colloids is only about
6 orders of magnitude.
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I The point-to-set length

» Liquid-glass equilibrium phase transition: long-range order emerging at Tk.
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I The point-to-set length

» Liquid-glass equilibrium phase transition: long-range order emerging at Tx.

» Analogy with ferromagnetism:

+ Imhomogeneous magnetization profile M(C, ).

¢ The order parameter is correlated on a length scale { — +o0.

T—TF

o Cavity argument with frozen spins on the boundaries:

M(C, )| ,cop =

HTTTHHT
!

(M(C,0)) = 1

M

L <&
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I
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(RNNRNANERI
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(M(C,0)) =0
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I The point-to-set length

» Liquid-glass equilibrium phase transition: long-range order emerging at Tk.

» Definition of the point-to-set length prs:
¢ Imhomogeneous overlap profile Q(C,Co, x).
¢ The order parameter is correlated on a length scale {pprg —  +o0.

T—T,
K
¢ Cavity argument with frozen particles on the boundaries [Bouchaud, Biroli (2004)]:
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I The point-to-set length

» Liquid-glass equilibrium phase transition: long-range order emerging at Tk.
» Definition of the point-to-set length £pps:

+ Imhomogeneous overlap profile Q(C, Co, x).

¢ The order parameter is correlated on a length scale {prg —>+ +o00.

T—T,
K
« Cavity argument with frozen particles on the boundaries [Bouchaud, Biroli (2004)]:

Q(C7C07w)|meav =1 Q(C’Co’w)|m€3v =1

©©£600°.
L . L>£PTS
<&ors ..goo 0L

(Q(C,C0,0)) ~ 1 (Q(C,Co,0)) ~ 0
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Measurements of the point-to-set length

» The point-to-set length can be measured via the measurement of overlap
fluctuations in cavities.

» Computer simulations [Biroli, Bouchaud, Cavagna, Grigera, Verrocchio (2008), Berthier, Charbonneau, Yaida
(2016)].

> Experiments Wlth CO”OidS using optical tweezers [Nagamanasa, Gokhale, Sood, Ganapathy
(2015)].
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Measurements of the point-to-set length
» The point-to-set length can be measured via the measurement of overlap

fluctuations in cavities.

» Computer simulations [Biroli, Bouchaud, Cavagna, Grigera, Verrocchio (2008), Berthier, Charbonneau, Yaida
(2016)].

> Experiments Wlth CO”OidS using optical tweezers [Nagamanasa, Gokhale, Sood, Ganapathy
(2015)].

» But still impossible for atomic and molecular glasses.
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I The mosaic state

» For timescales < 7, particles are almost frozen — self-induced frozen boundaries.

» Supercooled liquids are mosaics of “glassites” of different density profiles of size
£PTS [Kirkpatrick, Thirumalai, Wolynes (1989)].

» Each glassite relaxes independently on a typical timescale 7.

(This is a cartoon!)
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I Probing the mosaic state in atomic and molecular glasses

» Liquid of anisotropic molecules in the presence of an oscillatory electric field E at
an angular frequency w ~ 1/Ta [Bouchaud, Biroli (2005)].

- Molecule of glycerol.
e :
9

» Each glassite responds collectively with a typical induced dipolar moment
Pe = paip (€prs /€)™ ? (random orientations):

Pg = :g:: pi —

iEglassite
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I Probing the mosaic state in atomic and molecular glasses

» Liquid of anisotropic molecules in the presence of an oscillatory electric field E at
an angular frequency w ~ 1/Ta [Bouchaud, Biroli (2005)].

Molecule of glycerol.
e :
9

» Each glassite responds collectively with a typical induced dipolar moment
Pe = paip (€prs /€)™ ? (random orientations):

(pg) =0

= P =
Pe Z p 2 2 gPTS d 2
iEglassite <pg> = Z Di = ¢ Hdip

iE€glassite
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I Probing the mosaic state in atomic and molecular glasses

» Total dipole density of a sample:

DPg
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I Probing the mosaic state in atomic and molecular glasses

» Total dipole density of a sample:

P = el (B) = (S572) o (Ll T8,

(prs/0)?” \kpT kT

. . e 0
» Total dielectric susceptibilities X(k) X ——

2 4 d 6 d
M) o :udip, NORS Hdip (fPTS) Ly Hdip (SPTS)Z .
ksT (ksT)? (keT)s \ ¢
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I Probing the mosaic state in atomic and molecular glasses

» Total dipole density of a sample:

__p peE\ _ gprs\~? _ ((paip(éprs/0)Y°E
P_(&,T:/g)d}-<g_>_udip< ) f( - keT :

) o 9

» Total dielectric susceptibilities x ETork

2 4 6
(1) o Paip D ® Hdip (fPTs ) a4 L O Hdip (SPTS ) 2d _
kT (ksT)? \" ¢ (ksT)5 \" ¢

» The linear susceptibility remains finite at Tk (fluctuation-dissipation theorem),
but non-linear susceptibilities should diverge.
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Probing the mosaic state in atomic and molecular glasses
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[Albert, Bauer, Michl, Biroli, Bouchaud, Loidl, Lunkenheimer,
Tourbot, Wiertel-Gasquet, Ladieu (2016)]

[Brun, Ladieu, L'Hote, Tarzia, Biroli, Bouchaud (2011)]

» Experiments and simulations report a modest increase in £prg by a factor of 2.
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Conclusions

» Static overlap fluctuations allow to probe the structure of the configuration space
(free energy landscape).

» Well-defined (but not straightforward) strategies to study these fluctuations in
simulations and experiments.

» Glass transition: overlap fluctuations reveal an underlying equilibrium phase
transition towards an ideal glass phase at Tk.

» The overlap is a good static descriptor of the configuration space for disordered
complex systems in general (not only glasses).
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Conclusions

» Static overlap fluctuations allow to probe the structure of the configuration space
(free energy landscape).

» Well-defined (but not straightforward) strategies to study these fluctuations in
simulations and experiments.

» Glass transition: overlap fluctuations reveal an underlying equilibrium phase
transition towards an ideal glass phase at Tk.

» The overlap is a good static descriptor of the configuration space for disordered
complex systems in general (not only glasses) [Chardac, Shankar, Marchetti, Bartolo (2021)].
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