Demystifying the overlap order parameter in glass-forming liquids

Benjamin GUISELIN

The phenomenology of the glass transition

- Dramatic slowing down of the microscopic dynamics of a liquid upon cooling.
- The conventional glass is an out-of-equilibrium system.

[Guiselin, Tarjus, Berthier (2022)]

Distinguish a glass from a liquid with naked eyes?

Try to guess which one is a glass sample.

Distinguish a glass from a liquid with naked eyes?

The answer is hard to tell with naked eyes.

$\tau_{\alpha} \simeq 3.10^{18}$ years \gg Age of the Universe.

$\tau_{\alpha} \simeq 3 \mu \mathrm{~s}$.

Distinguish a glass from a liquid with naked eyes?

- Very weak structural changes while the dynamics varies a lot.
- The density field $\rho(\boldsymbol{x})$ and its fluctuations [e.g., $g(r)$] are boring spectators of the glass transition.

Is the glass transition a purely dynamic phenomenon or is it somehow related to structural/thermodynamic changes?

The Kauzmann entropy crisis (1948)

- Kauzmann measured the excess entropy in the supercooled regime:

$$
\Delta S(T)=S_{\mathrm{liq}}(T)-S_{\mathrm{xtal}}(T) \simeq S_{\mathrm{liq}}(T)-S_{\mathrm{vib}}(T) \simeq S_{\mathrm{conf}}(T)
$$

- ΔS quantifies the number of independent density profiles in the liquid state.

[Kauzmann (1948)]

The ideal glass state

The ideal glass state

- Experimental data are consistent with an equilibrium phase transition between the liquid phase and the ideal glass phase at the Kauzmann temperature $T_{\mathrm{K}}<T_{\mathrm{g}}$.

The ideal glass state

- Experimental data are consistent with an equilibrium phase transition between the liquid phase and the ideal glass phase at the Kauzmann temperature $T_{\mathrm{K}}<T_{\mathrm{g}}$.

What are the order parameter, the ordering field and the Landau free energy of this putative phase transition?

P－spin models
P－spin models
P－spin models

 路

 路}

p-spin models

- Usual starting point to study phase transitions: the mean-field theory.
- Detour via the theory of fully-connected spin systems with p-body random interactions ($p \geq 3$) [Kirkpatrick, Thirumalai, Wolynes (late 80's)].

$$
\mathcal{H}=-\sum_{\substack{i, j, k=1 \\ i<j<k}}^{N} J_{i j k} S_{i} S_{j} S_{k}, \quad \frac{1}{N} \sum_{i=1}^{N} S_{i}^{2}=1, \quad \overline{J_{i j k}}=0, \quad \overline{J_{i j k}^{2}}=\frac{3}{2 N^{2}}
$$

(spherical 3-spin model)

p-spin models

- Usual starting point to study phase transitions: the mean-field theory.
- Detour via the theory of fully-connected spin systems with p-body random interactions $(p \geq 3)$ [Kirkpatrick, Thirumalai, Wolynes (late 80's)].

$$
\mathcal{H}=-\sum_{\substack{i, j, k=1 \\ i<j<k}}^{N} J_{i j k} S_{i} S_{j} S_{k}, \quad \frac{1}{N} \sum_{i=1}^{N} S_{i}^{2}=1, \quad \overline{J_{i j k}}=0, \quad \overline{J_{i j k}^{2}}=\frac{3}{2 N^{2}}
$$ (spherical 3-spin model)

- Everything can be computed exactly: the statics [Crisanti, Sommers (1992)] and the dynamics [Crisanti, Horner, Sommers (1993)].

Reminders of phase transitions in mean-field: the Curie-Weiss model

- The Curie-Weiss model is the mean-field (long-range) formulation of the Ising model:

$$
\mathcal{H}(\mathcal{C})=-\frac{1}{N} \sum_{\substack{i, j=1 \\ i<j}}^{N} S_{i} S_{j}
$$

Reminders of phase transitions in mean-field: the Curie-Weiss model

- The Curie-Weiss model is the mean-field (long-range) formulation of the Ising model:

$$
\mathcal{H}(\mathcal{C})=-\frac{1}{N} \sum_{\substack{i, j=1 \\ i<j}}^{N} S_{i} S_{j}
$$

- Order parameter: intensive state variable to distinguish the two phases.

$$
\mathcal{M}(\mathcal{C})=\frac{1}{N} \sum_{i=1}^{N} S_{i}
$$

Reminders of phase transitions in mean-field: the Curie-Weiss model

- The Curie-Weiss model is the mean-field (long-range) formulation of the Ising model:

$$
\mathcal{H}(\mathcal{C})=-\frac{1}{N} \sum_{\substack{i, j=1 \\ i<j}}^{N} S_{i} S_{j}
$$

- Order parameter: intensive state variable to distinguish the two phases.

$$
\mathcal{M}(\mathcal{C})=\frac{1}{N} \sum_{i=1}^{N} S_{i}
$$

- Landau free energy: free energy cost to force the system to have a prescribed value of the order parameter.

Reminders of phase transitions in mean-field: the Curie-Weiss model

- The Curie-Weiss model is the mean-field (long-range) formulation of the Ising model:

$$
\mathcal{H}(\mathcal{C})=-\frac{1}{N} \sum_{\substack{i, j=1 \\ i<j}}^{N} S_{i} S_{j}
$$

- Order parameter: intensive state variable to distinguish the two phases.

$$
\mathcal{M}(\mathcal{C})=\frac{1}{N} \sum_{i=1}^{N} S_{i}
$$

- Landau free energy: free energy cost to force the system to have a prescribed value of the order parameter.

$$
F(M)=\quad \sum_{\mathcal{C}} e^{-\beta \mathcal{H}(\mathcal{C})}
$$

Reminders of phase transitions in mean-field: the Curie-Weiss model

- The Curie-Weiss model is the mean-field (long-range) formulation of the Ising model:

$$
\mathcal{H}(\mathcal{C})=-\frac{1}{N} \sum_{\substack{i, j=1 \\ i<j}}^{N} S_{i} S_{j}
$$

- Order parameter: intensive state variable to distinguish the two phases.

$$
\mathcal{M}(\mathcal{C})=\frac{1}{N} \sum_{i=1}^{N} S_{i}
$$

- Landau free energy: free energy cost to force the system to have a prescribed value of the order parameter.

$$
F(M)=\quad \sum_{\mathcal{C}} e^{-\beta \mathcal{H}(\mathcal{C})} \delta(M-\mathcal{M}(\mathcal{C}))
$$

Reminders of phase transitions in mean-field: the Curie-Weiss model

- The Curie-Weiss model is the mean-field (long-range) formulation of the Ising model:

$$
\mathcal{H}(\mathcal{C})=-\frac{1}{N} \sum_{\substack{i, j=1 \\ i<j}}^{N} S_{i} S_{j}
$$

- Order parameter: intensive state variable to distinguish the two phases.

$$
\mathcal{M}(\mathcal{C})=\frac{1}{N} \sum_{i=1}^{N} S_{i}
$$

- Landau free energy: free energy cost to force the system to have a prescribed value of the order parameter.

$$
F(M)=-\frac{1}{N \beta} \ln \left[\sum_{\mathcal{C}} e^{-\beta \mathcal{H}(\mathcal{C})} \delta(M-\mathcal{M}(\mathcal{C}))\right]-F_{\mathrm{eq}}(T)
$$

Reminders of phase transitions in mean-field: the Curie-Weiss model

- The Curie-Weiss model is the mean-field (long-range) formulation of the Ising model:

$$
\mathcal{H}(\mathcal{C})=-\frac{1}{N} \sum_{\substack{i, j=1 \\ i<j}}^{N} S_{i} S_{j}
$$

- Order parameter: intensive state variable to distinguish the two phases.

$$
\mathcal{M}(\mathcal{C})=\frac{1}{N} \sum_{i=1}^{N} S_{i}
$$

- Landau free energy: free energy cost to force the system to have a prescribed value of the order parameter.

$$
F(M)=-\frac{1}{N \beta} \ln \left[\sum_{\mathcal{C}} \frac{e^{-\beta \mathcal{H}(\mathcal{C})}}{\mathcal{Z}} \delta(M-\mathcal{M}(\mathcal{C}))\right]
$$

Reminders of phase transitions in mean-field: the Curie-Weiss model

- The Curie-Weiss model is the mean-field (long-range) formulation of the Ising model:

$$
\mathcal{H}(\mathcal{C})=-\frac{1}{N} \sum_{\substack{i, j=1 \\ i<j}}^{N} S_{i} S_{j}
$$

- Order parameter: intensive state variable to distinguish the two phases.

$$
\mathcal{M}(\mathcal{C})=\frac{1}{N} \sum_{i=1}^{N} S_{i}
$$

- Landau free energy: free energy cost to force the system to have a prescribed value of the order parameter.

$$
F(M)=-\frac{1}{N \beta} \ln \left[\sum_{\mathcal{C}} \frac{e^{-\beta \mathcal{H}(\mathcal{C})}}{\mathcal{Z}} \delta(M-\mathcal{M}(\mathcal{C}))\right]
$$

- Landau free energy = large deviation rate function of the order parameter probability distribution $\mathcal{P}(M)$.

$$
F(M)=-\frac{1}{N \beta} \ln \mathcal{P}(M) \quad \Longrightarrow \quad \mathcal{P}(M) \propto e^{-N \beta F(M)}
$$

Reminders of phase transitions in mean-field: the Curie-Weiss model

Reminders of phase transitions in mean-field: the Curie-Weiss model

- Couple the order parameter to an external field.

$$
\left\{\begin{array}{l}
\mathcal{H}(\mathcal{C}) \rightarrow \mathcal{H}(\mathcal{C})-N h \mathcal{M}(\mathcal{C}) \\
F(M) \rightarrow F(M)-h M \\
\mathcal{P}(M) \rightarrow \mathcal{P}(M) e^{N \beta h M}
\end{array}\right.
$$

- Ordering field: external field h which breaks the spontaneous symmetry breaking below T_{c}.

The overlap order parameter

- $S_{\text {conf }}(T) \underset{T \rightarrow T_{\mathrm{K}}}{\longrightarrow} 0$: the number of states the system can visit under equilibrium conditions decreases.
- $T<T_{\mathrm{K}}$: equilibrium configurations are similar (but still disordered).
- Order parameter for the liquid-to-glass transition:

The overlap order parameter

- $S_{\mathrm{conf}}(T) \underset{T \rightarrow T_{\mathrm{K}}}{\longrightarrow} 0$: the number of states the system can visit under equilibrium conditions decreases.
- $T<T_{\mathrm{K}}$: equilibrium configurations are similar (but still disordered).
- Order parameter for the liquid-to-glass transition:

1. pick at random an equilibrium configuration \mathcal{C}_{0} (reference configuration),

The overlap order parameter

- $S_{\mathrm{conf}}(T) \underset{T \rightarrow T_{\mathrm{K}}}{\longrightarrow} 0$: the number of states the system can visit under equilibrium conditions decreases.
- $T<T_{\mathrm{K}}$: equilibrium configurations are similar (but still disordered).
- Order parameter for the liquid-to-glass transition:

1. pick at random an equilibrium configuration \mathcal{C}_{0} (reference configuration),
2. take a second equilibrium configuration \mathcal{C},

The overlap order parameter

- $S_{\mathrm{conf}}(T) \underset{T \rightarrow T_{\mathrm{K}}}{\longrightarrow} 0$: the number of states the system can visit under equilibrium conditions decreases.
- $T<T_{\mathrm{K}}$: equilibrium configurations are similar (but still disordered).
- Order parameter for the liquid-to-glass transition:

1. pick at random an equilibrium configuration \mathcal{C}_{0} (reference configuration),
2. take a second equilibrium configuration \mathcal{C},
3. measure their overlap or the degree of similarity of their magnetization/density profiles.

The overlap order parameter

- $S_{\text {conf }}(T) \underset{T \rightarrow T_{\mathrm{K}}}{\longrightarrow} 0$: the number of states the system can visit under equilibrium conditions decreases.
- $T<T_{\mathrm{K}}$: equilibrium configurations are similar (but still disordered).
- Order parameter for the liquid-to-glass transition:

1. pick at random an equilibrium configuration \mathcal{C}_{0} (reference configuration),
2. take a second equilibrium configuration \mathcal{C},
3. measure their overlap or the degree of similarity of their magnetization/density profiles.

$$
\begin{gathered}
\mathcal{Q}\left(\mathcal{C}, \mathcal{C}_{0}\right)=\frac{1}{N} \sum_{i=1}^{N} S_{i} S_{i}^{(0)} \\
\text { (spherical } p \text {-spin model) }
\end{gathered}
$$

- The overlap involves two copies/replicas of the same system.

The overlap order parameter

The overlap order parameter
 The overlap order parameter
 \square

 The overlap order parameter

 \square

 (C)
 \qquad

 路

 \qquad

 Comers)

The overlap order parameter

The overlap order parameter

$\mathcal{Q}\left(\mathcal{C}, \mathcal{C}_{0}\right)$

The overlap order parameter

- For $T>T_{\mathrm{K}}$, exponentially large number of density profiles (liquid phase):
$\left\langle\mathcal{Q}\left(\mathcal{C}, \mathcal{C}_{0}\right)\right\rangle \simeq 0$.

The overlap order parameter

- For $T<T_{\mathrm{K}}$, small number of density profiles (ideal glass phase): finite probability to have $\mathcal{Q}\left(\mathcal{C}, \mathcal{C}_{0}\right) \simeq 1$.

The Franz-Parisi potential
- The Landau free energy for overlap fluctuations is the Franz-Parisi potential $V(Q)$
[Franz, Parsi (1995)].
The Franz-Parisi potential
- The Landau free energy for overlap fluctuations is the Franz-Parisi potential $V(Q)$
[Franz: Paris ((1955).

The Franz-Parisi potential

- The Landau free energy for overlap fluctuations is the Franz-Parisi potential $V(Q)$
[Franz, Parisi (1995)].

$$
F(M)=-\frac{1}{N \beta} \ln \left[\sum_{\mathcal{C}} \frac{e^{-\beta \mathcal{H}(\mathcal{C})}}{\mathcal{Z}} \delta(M-\mathcal{M}(\mathcal{C}))\right]
$$

雨
(Frat Pais (1995).

$$
0
$$

$$
\begin{aligned}
& \text { The Franz-Parisi potential } \\
& \qquad \text { The Landau free energy for overlap fluctuations is the Franz-Parisi potential } V(Q) \\
& \qquad V(Q)=-\frac{1}{N \beta} \ln \left[\sum_{\mathcal{C}} \frac{e^{-\beta \mathcal{H}(\mathcal{C})}}{\mathcal{Z}} \delta\left(Q-\mathcal{Q}\left(\mathcal{C}, \mathcal{C}_{0}\right)\right)\right] \\
& \qquad \text { Franz, Paris (1995)]. }
\end{aligned}
$$

ए
.
ए

The Franz-Parisi potential

- The Landau free energy for overlap fluctuations is the Franz-Parisi potential $V(Q)$
[Franz, Parisi (1995)].

$$
V(Q)=-\frac{1}{N \beta} \ln \left[\sum_{\mathcal{C}} \frac{e^{-\beta \mathcal{H}(\mathcal{C})}}{\mathcal{Z}} \delta\left(Q-\mathcal{Q}\left(\mathcal{C}, \mathcal{C}_{0}\right)\right)\right]
$$

五

The Franz-Parisi potential

- The Landau free energy for overlap fluctuations is the Franz-Parisi potential $V(Q)$ [Franz, Parisi (1995)].

$$
V(Q)=\sum_{\mathcal{C}_{0}} \frac{e^{-\beta \mathcal{H}\left(\mathcal{C}_{0}\right)}}{\mathcal{Z}}\left\{-\frac{1}{N \beta} \ln \left[\sum_{\mathcal{C}} \frac{e^{-\beta \mathcal{H}(\mathcal{C})}}{\mathcal{Z}} \delta\left(Q-\mathcal{Q}\left(\mathcal{C}, \mathcal{C}_{0}\right)\right)\right]\right\}
$$

- The free energy should be self-averaging with respect to the reference configuration (quenched disorder).

The Franz-Parisi potential

- The Landau free energy for overlap fluctuations is the Franz-Parisi potential $V(Q)$ [Franz, Parisi (1995)].

$$
V(Q)=\sum_{\mathcal{C}_{0}} \frac{e^{-\beta \mathcal{H}\left(\mathcal{C}_{0}\right)}}{\mathcal{Z}}\left\{-\frac{1}{N \beta} \ln \left[\sum_{\mathcal{C}} \frac{e^{-\beta \mathcal{H}(\mathcal{C})}}{\mathcal{Z}} \delta\left(Q-\mathcal{Q}\left(\mathcal{C}, \mathcal{C}_{0}\right)\right]\right\}\right.
$$

- The free energy should be self-averaging with respect to the reference configuration (quenched disorder).

The Franz-Parisi potential

- The Landau free energy for overlap fluctuations is the Franz-Parisi potential $V(Q)$ [Franz, Parisi (1995)].

$$
V(Q)=\sum_{\mathcal{C}_{0}} \frac{e^{-\beta \mathcal{H}\left(\mathcal{C}_{0}\right)}}{\mathcal{Z}}\left\{-\frac{1}{N \beta} \ln \left[\sum_{\mathcal{C}} \frac{e^{-\beta \mathcal{H}(\mathcal{C})}}{\mathcal{Z}} \delta\left(Q-\mathcal{Q}\left(\mathcal{C}, \mathcal{C}_{0}\right)\right]\right\}\right.
$$

- The free energy should be self-averaging with respect to the reference configuration (quenched disorder).

The Franz-Parisi potential

- The Landau free energy for overlap fluctuations is the Franz-Parisi potential $V(Q)$ [Franz, Parisi (1995)].

$$
V(Q)=\sum_{\mathcal{C}_{0}} \frac{e^{-\beta \mathcal{H}\left(\mathcal{C}_{0}\right)}}{\mathcal{Z}}\left\{-\frac{1}{N \beta} \ln \left[\sum_{\mathcal{C}} \frac{e^{-\beta \mathcal{H}(\mathcal{C})}}{\mathcal{Z}} \delta\left(Q-\mathcal{Q}\left(\mathcal{C}, \mathcal{C}_{0}\right)\right]\right\}\right.
$$

- The free energy should be self-averaging with respect to the reference configuration (quenched disorder).

The Franz-Parisi potential

- The Landau free energy for overlap fluctuations is the Franz-Parisi potential $V(Q)$ [Franz, Parisi (1995)].

$$
V(Q)=\sum_{\mathcal{C}_{0}} \frac{e^{-\beta \mathcal{H}\left(\mathcal{C}_{0}\right)}}{\mathcal{Z}}\left\{-\frac{1}{N \beta} \ln \left[\sum_{\mathcal{C}} \frac{e^{-\beta \mathcal{H}(\mathcal{C})}}{\mathcal{Z}} \delta\left(Q-\mathcal{Q}\left(\mathcal{C}, \mathcal{C}_{0}\right)\right]\right\}\right.
$$

- The free energy should be self-averaging with respect to the reference configuration (quenched disorder).

The Franz-Parisi potential

- The Landau free energy for overlap fluctuations is the Franz-Parisi potential $V(Q)$ [Franz, Parisi (1995)].

$$
V(Q)=\sum_{\mathcal{C}_{0}} \frac{e^{-\beta \mathcal{H}\left(\mathcal{C}_{0}\right)}}{\mathcal{Z}}\left\{-\frac{1}{N \beta} \ln \left[\sum_{\mathcal{C}} \frac{e^{-\beta \mathcal{H}(\mathcal{C})}}{\mathcal{Z}} \delta\left(Q-\mathcal{Q}\left(\mathcal{C}, \mathcal{C}_{0}\right)\right]\right\}\right.
$$

- The free energy should be self-averaging with respect to the reference configuration (quenched disorder).

The Franz-Parisi potential

- The Landau free energy for overlap fluctuations is the Franz-Parisi potential $V(Q)$ [Franz, Parisi (1995)].

$$
V(Q)=\sum_{\mathcal{C}_{0}} \frac{e^{-\beta \mathcal{H}\left(\mathcal{C}_{0}\right)}}{\mathcal{Z}}\left\{-\frac{1}{N \beta} \ln \left[\sum_{\mathcal{C}} \frac{e^{-\beta \mathcal{H}(\mathcal{C})}}{\mathcal{Z}} \delta\left(Q-\mathcal{Q}\left(\mathcal{C}, \mathcal{C}_{0}\right)\right]\right\}\right.
$$

- The free energy should be self-averaging with respect to the reference configuration (quenched disorder).

The Franz-Parisi potential

- The Landau free energy for overlap fluctuations is the Franz-Parisi potential $V(Q)$ [Franz, Parisi (1995)].

$$
V(Q)=\sum_{\mathcal{C}_{0}} \frac{e^{-\beta \mathcal{H}\left(\mathcal{C}_{0}\right)}}{\mathcal{Z}}\left\{-\frac{1}{N \beta} \ln \left[\sum_{\mathcal{C}} \frac{e^{-\beta \mathcal{H}(\mathcal{C})}}{\mathcal{Z}} \delta\left(Q-\mathcal{Q}\left(\mathcal{C}, \mathcal{C}_{0}\right)\right]\right\}\right.
$$

- The free energy should be self-averaging with respect to the reference configuration (quenched disorder).

The Franz-Parisi potential

- The way the system explores the configuration space is encapsulated in the temperature evolution of $V(Q)$ [Parisi, Urbani, Zamponi (2020)].

The Franz-Parisi potential

- The way the system explores the configuration space is encapsulated in the temperature evolution of $V(Q)$ [Parisi, Urbani, Zamponi (2020)].

The Franz-Parisi potential

- The way the system explores the configuration space is encapsulated in the temperature evolution of $V(Q)$ [Parisi, Urbani, Zamponi (2020)].

Configuration

The ϵ-coupling
 -

\section*{,

,

 sling

The ϵ-coupling
The ϵ-coupling fe e-coupling
\qquad
\qquad

[^0]

The ϵ-coupling
The ϵ-coupling

The ϵ-coupling
The ϵ-coupling
The ϵ-coupling

[^1]-

The ϵ-coupling
 |

Couple the overlap to an external field ϵ to promote large overlap values.
$\qquad\left\{\begin{array}{l}\mathcal{H}(\mathcal{C}) \rightarrow \mathcal{H}(\mathcal{C})-N h \mathcal{M}(\mathcal{C}) \\ F(M) \rightarrow F(M)-h M \\ \mathcal{P}(M) \rightarrow \mathcal{P}(M) e^{N \beta h M}\end{array}\right.$
$10 / 26$

$$
\begin{aligned}
& \text { The } \epsilon \text {-coupling } \\
& \qquad \text { Couple the overlap to an external field } \epsilon \text { to promote large overlap values. } \\
& \qquad\left\{\begin{array}{l}
\mathcal{H}(\mathcal{C}) \rightarrow \mathcal{H}(\mathcal{C})-N \epsilon \mathcal{Q}\left(\mathcal{C}, \mathcal{C}_{0}\right) \\
V(Q) \rightarrow V(Q)-\epsilon Q \\
\mathcal{P}(Q) \rightarrow \mathcal{P}(Q) e^{N \beta \epsilon Q}
\end{array}\right. \\
& \qquad
\end{aligned}
$$

The ϵ-coupling

$$
\left\{\begin{array}{l}\mathcal{H}(\mathcal{C}) \rightarrow \mathcal{H}(\mathcal{C})-N \in \mathcal{Q}\left(\mathcal{C}, \mathcal{C}_{0}\right) \\ V(Q) \rightarrow V(Q)-\epsilon Q \\ \mathcal{P}(Q) \rightarrow \mathcal{P}(Q) e^{N \beta \in Q}\end{array}\right.
$$

$$
\begin{array}{l}\text { Couple the overlap to an external field } \epsilon \text { to promote large overlap values. }\end{array}
$$

$$
\begin{array}{l}\text { QQ }\end{array}
$$

$$
\begin{array}{l}\text { (Q) }\end{array}
$$

The ϵ-coupling

- Couple the overlap to an external field ϵ to promote large overlap values.

$$
\begin{aligned}
&\left\{\begin{aligned}
\mathcal{H}(\mathcal{C}) & \rightarrow \mathcal{H}(\mathcal{C})-N \epsilon \mathcal{Q}\left(\mathcal{C}, \mathcal{C}_{0}\right) \\
V(Q) & \rightarrow V(Q)-\epsilon Q \\
\mathcal{P}(Q) & \rightarrow \mathcal{P}(Q) e^{N \beta \epsilon Q}
\end{aligned}\right. \\
&-\sum_{\substack{i, j, k=1 \\
i<j<k}}^{N} J_{i j k} S_{i} S_{j} S_{k} \rightarrow-\sum_{\substack{i, j, k=1 \\
i<j<k}}^{N} J_{i j k} S_{i} S_{j} S_{k}-\sum_{i=1}^{N} \epsilon S_{i}^{(0)} S_{i} . \\
& \text { (spherical 3-spin model) }
\end{aligned}
$$

The ϵ-coupling

- Couple the overlap to an external field ϵ to promote large overlap values.

$$
\begin{aligned}
&\left\{\begin{aligned}
\mathcal{H}(\mathcal{C}) & \rightarrow \mathcal{H}(\mathcal{C})-N \epsilon \mathcal{Q}\left(\mathcal{C}, \mathcal{C}_{0}\right) \\
V(Q) & \rightarrow V(Q)-\epsilon Q \\
\mathcal{P}(Q) & \rightarrow \mathcal{P}(Q) e^{N \beta \epsilon Q}
\end{aligned}\right. \\
&-\sum_{\substack{i, j, k=1 \\
i<j<k}}^{N} J_{i j k} S_{i} S_{j} S_{k} \rightarrow-\sum_{\substack{i, j, k=1 \\
i<j<k}}^{N} J_{i j k} S_{i} S_{j} S_{k}-\sum_{i=1}^{N} \epsilon S_{i}^{(0)} S_{i} . \\
& \text { (spherical 3-spin model) }
\end{aligned}
$$

- Attraction towards the reference configuration in the configuration space.

(

The ϵ-coupling

- Phase diagram (T, ϵ) which describes the entire thermodynamics of glassy systems [Franz, Parisi (1997)].

- First-order phase transition for $\epsilon=\epsilon^{*}(T)$.

The ϵ-coupling

- Phase diagram (T, ϵ) which describes the entire thermodynamics of glassy systems [Franz, Parisi (1997)].

- First-order phase transition for $\epsilon=\epsilon^{*}(T)$.
- Energy gain to overcome the entropic cost to be localised close to the reference configuration (practical way of measuring S_{conf}): $\epsilon^{*}(T)=T S_{\mathrm{conf}}(T)$.

The ϵ-coupling

- Phase diagram (T, ϵ) which describes the entire thermodynamics of glassy systems [Franz, Parisi (1997)].

- First-order phase transition for $\epsilon=\epsilon^{*}(T)$.
- Energy gain to overcome the entropic cost to be localised close to the reference configuration (practical way of measuring S_{conf}): $\epsilon^{*}(T)=T S_{\mathrm{conf}}(T)$.
- Critical point in the universality class of the random-field Ising model.

The overlap for supercooled liquids in finite dimensions

- For off-lattice systems, one cannot just compare the density profiles:

$$
\rho(\boldsymbol{x})=\sum_{i=1}^{N} \delta\left(\boldsymbol{x}-\boldsymbol{r}_{i}\right)
$$

The overlap for supercooled liquids in finite dimensions

- For off-lattice systems, one cannot just compare the density profiles:

$$
\rho(\boldsymbol{x})=\sum_{i=1}^{N} \delta\left(\boldsymbol{x}-\boldsymbol{r}_{i}\right)
$$

$$
\mathcal{Q}\left(\mathcal{C}, \mathcal{C}_{0}\right)=1
$$

The overlap for supercooled liquids in finite dimensions

- For off-lattice systems, one cannot just compare the density profiles:

$$
\rho(\boldsymbol{x})=\sum_{i=1}^{N} \delta\left(\boldsymbol{x}-\boldsymbol{r}_{i}\right)
$$

$$
\mathcal{Q}\left(\mathcal{C}, \mathcal{C}_{0}\right)=0
$$

The overlap for supercooled liquids in finite dimensions

- For off-lattice systems, one cannot just compare the density profiles:

$$
\rho(\boldsymbol{x})=\sum_{i=1}^{N} \delta\left(\boldsymbol{x}-\boldsymbol{r}_{i}\right)
$$

$$
\mathcal{Q}\left(\mathcal{C}, \mathcal{C}_{0}\right) \simeq 1
$$

- The definition of the overlap requires coarse-graining on a typical length scale a :

$$
\mathcal{Q}\left(\mathcal{C}, \mathcal{C}_{0}\right)=\frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{N} w\left(\frac{\left|\boldsymbol{r}_{i}-\boldsymbol{r}_{j}^{(0)}\right|}{a}\right) .
$$

- Typically, a is a fraction of particle diameter to account for thermal vibrations (about 0.2-0.3) [Guiselin, Tarjus, Berthier (2020)].
- The function $w(x)$ decays on a typical scale of order 1 [e.g., $\left.w(x)=e^{-x^{4} \ln (2)}\right]$.

The Franz-Parisi potential for supercooled liquids in finite dimensions

- Analytic calculations are an uncomplete formidable task beyond mean-field.
- Even though $S_{\text {conf }}$ is not well-defined beyond mean-field, $V(Q)$ and phase transitions in the (T, ϵ) are still sharply defined.

The Franz-Parisi potential for supercooled liquids in finite dimensions

- Analytic calculations are an uncomplete formidable task beyond mean-field.
- Even though $S_{\text {conf }}$ is not well-defined beyond mean-field, $V(Q)$ and phase transitions in the (T, ϵ) are still sharply defined.

Mean-field theory.

The Franz-Parisi potential for supercooled liquids in finite dimensions

- Analytic calculations are an uncomplete formidable task beyond mean-field.
- Even though $S_{\text {conf }}$ is not well-defined beyond mean-field, $V(Q)$ and phase transitions in the (T, ϵ) are still sharply defined.

Putative results in finite dimensions.
\hookrightarrow Convexity is restored via phase-separation.

The Franz-Parisi potential for supercooled liquids in finite dimensions

- Analytic calculations are an uncomplete formidable task beyond mean-field.
- Even though $S_{\text {conf }}$ is not well-defined beyond mean-field, $V(Q)$ and phase transitions in the (T, ϵ) are still sharply defined.

Putative results in finite dimensions.
\hookrightarrow Convexity is restored via phase-separation.

- One can still define a proxy for the configurational entropy $\epsilon^{*}(T)=T S_{\text {conf }}(T)$.

Measuring the Franz-Parisi potential in computer simulations

- Simulations to measure \mathcal{Q} and its probability distribution $\mathcal{P}(Q) \propto e^{-N \beta V(Q)}$.

Measuring the Franz-Parisi potential in computer simulations

- Simulations to measure \mathcal{Q} and its probability distribution $\mathcal{P}(Q) \propto e^{-N \beta V(Q)}$.
- Order of magnitude for $Q \simeq 1$:

$$
\beta V(Q) \simeq 1, \quad N \simeq 300 \quad \Longrightarrow \quad \mathcal{P}(Q) \simeq e^{-300} \simeq 10^{-130} .
$$

Measuring the Franz-Parisi potential in computer simulations

- Simulations to measure \mathcal{Q} and its probability distribution $\mathcal{P}(Q) \propto e^{-N \beta V(Q)}$.
- Order of magnitude for $Q \simeq 1$:

$$
\beta V(Q) \simeq 1, \quad N \simeq 300 \Longrightarrow \mathcal{P}(Q) \simeq e^{-300} \simeq 10^{-130}
$$

- Measuring $V(Q)$ requires to sample very rare events:
10^{8} MD steps/week \Longrightarrow Simulation of 10^{120} years.

Measuring the Franz-Parisi potential in computer simulations

- Simulations to measure \mathcal{Q} and its probability distribution $\mathcal{P}(Q) \propto e^{-N \beta V(Q)}$.
- Order of magnitude for $Q \simeq 1$:

$$
\beta V(Q) \simeq 1, \quad N \simeq 300 \quad \Longrightarrow \quad \mathcal{P}(Q) \simeq e^{-300} \simeq 10^{-130}
$$

- Measuring $V(Q)$ requires to sample very rare events:
$10^{8} \mathrm{MD}$ steps/week \Longrightarrow Simulation of 10^{120} years \gg Age of the Universe.

Measuring the Franz-Parisi potential in computer simulations

- Simulations to measure \mathcal{Q} and its probability distribution $\mathcal{P}(Q) \propto e^{-N \beta V(Q)}$.
- Order of magnitude for $Q \simeq 1$:

$$
\beta V(Q) \simeq 1, \quad N \simeq 300 \quad \Longrightarrow \quad \mathcal{P}(Q) \simeq e^{-300} \simeq 10^{-130}
$$

- Measuring $V(Q)$ requires to sample very rare events:
$10^{8} \mathrm{MD}$ steps/week \Longrightarrow Simulation of 10^{120} years \gg Age of the Universe.
- Bias the simulation to visit very unlikely overlap fluctuations in a controlled way to recover the unbiased overlap probability distribution.

Measuring the Franz-Parisi potential via Umbrella Sampling

- Different ways of biasing the simulation: umbrella sampling [Berthier (2013), Parisi, Seoane (2014), Guiselin, Tarjus, Berthier (2022)], Wang-Landau [Nishikawa, Hukushima (2020)], etc.
- Bias the Hamiltonian of MD/MC simulations for a fixed reference configuration \mathcal{C}_{0} :

$$
\mathcal{H}(\mathcal{C}) \rightarrow \mathcal{H}(\mathcal{C})+\frac{1}{2} N \kappa\left[\mathcal{Q}\left(\mathcal{C}, \mathcal{C}_{0}\right)-Q_{0}\right]^{2}=\mathcal{H}(\mathcal{C})+\mathcal{W}\left(\mathcal{Q}\left(\mathcal{C}, \mathcal{C}_{0}\right)\right)
$$

- Control κ and Q_{0} to visit any value of the overlap, and measure the biased overlap distribution $\mathcal{P}_{\mathcal{W}}(Q)$.

Measuring the Franz-Parisi potential via Umbrella Sampling

- Different ways of biasing the simulation: umbrella sampling [Berthier (2013), Parisi, Seoane (2014), Guiselin, Tarjus, Berthier (2022)], Wang-Landau [Nishikawa, Hukushima (2020)], etc.
- Bias the Hamiltonian of MD/MC simulations for a fixed reference configuration \mathcal{C}_{0} :

$$
\mathcal{H}(\mathcal{C}) \rightarrow \mathcal{H}(\mathcal{C})+\frac{1}{2} N \kappa\left[\mathcal{Q}\left(\mathcal{C}, \mathcal{C}_{0}\right)-Q_{0}\right]^{2}=\mathcal{H}(\mathcal{C})+\mathcal{W}\left(\mathcal{Q}\left(\mathcal{C}, \mathcal{C}_{0}\right)\right)
$$

- Control κ and Q_{0} to visit any value of the overlap, and measure the biased overlap distribution $\mathcal{P}_{\mathcal{W}}(Q)$.

Bypassing sluggishness

- Simulations may become slow at low temperatures/high Q_{0}.
- More sophisticated MC moves to explore more efficiently the configuration space.

Simulations may become sow at low

- More sophistical MC moves to explore more efficiently the configuration space. R er
\qquad
 .
\qquad

Bypassing sluggishness

- Simulations may become slow at low temperatures/high Q_{0}.
- More sophisticated MC moves to explore more efficiently the configuration space.
- Swap MC: exchange the positions of two particles taken at random respecting detailed balance [Ninarello, Berthier, Coslovich (2017)].

Bypassing sluggishness

- Simulations may become slow at low temperatures/high Q_{0}.
- More sophisticated MC moves to explore more efficiently the configuration space.
- Swap MC: exchange the positions of two particles taken at random respecting detailed balance [Ninarello, Berthier, Coslovich (2017)].

- Requires systems with a high degree of polydispersity.
- Speedup of 8 orders of magnitude at T_{g}.

Bypassing sluggishness

- Simulations may become slow at low temperatures/high Q_{0}.
- More sophisticated MC moves to explore more efficiently the configuration space.
- Swap MC: exchange the positions of two particles taken at random respecting detailed balance [Ninarello, Berthier, Coslovich (2017)].

- Requires systems with a high degree of polydispersity.
- Speedup of 8 orders of magnitude at T_{g}.

- Parallel tempering: running n simulations in parallel with different biases \mathcal{W}_{i} (increasing values of Q_{0}) and exchanging the configurations of neighbouring \mathcal{W}_{i} respecting detailed balance [Hukushima, Nemoto (1996)].

Combining the biased distributions

- How to reconstruct the unbiased distribution $\mathcal{P}(Q)$?
- Biased Hamiltonian + thermal equilibrium:

$$
\left\{\begin{array}{l}
\mathcal{H}(\mathcal{C}) \rightarrow \mathcal{H}(\mathcal{C})+\mathcal{W}\left(\mathcal{Q}\left(\mathcal{C}, \mathcal{C}_{0}\right)\right) \\
\mathcal{P}(Q) \rightarrow \mathcal{P}_{\mathcal{W}}(Q) \propto \mathcal{P}(Q) e^{-\beta \mathcal{W}(Q)}
\end{array}\right.
$$

Combining the biased distributions

- How to reconstruct the unbiased distribution $\mathcal{P}(Q)$?
- Biased Hamiltonian + thermal equilibrium:

$$
\left\{\begin{array}{l}
\mathcal{H}(\mathcal{C}) \rightarrow \mathcal{H}(\mathcal{C})+\mathcal{W}\left(\mathcal{Q}\left(\mathcal{C}, \mathcal{C}_{0}\right)\right) \\
\mathcal{P}(Q) \rightarrow \mathcal{P}_{\mathcal{W}}(Q) \propto \mathcal{P}(Q) e^{-\beta \mathcal{W}(Q)}
\end{array}\right.
$$

- The curves $\mathcal{P}_{\mathcal{W}}(Q) e^{\beta \mathcal{W}(Q)} \propto \mathcal{P}(Q)$ should collapse on a master curve.

Combining the biased distributions

- How to reconstruct the unbiased distribution $\mathcal{P}(Q)$?
- Biased Hamiltonian + thermal equilibrium:

$$
\left\{\begin{array}{l}
\mathcal{H}(\mathcal{C}) \rightarrow \mathcal{H}(\mathcal{C})+\mathcal{W}\left(\mathcal{Q}\left(\mathcal{C}, \mathcal{C}_{0}\right)\right) \\
\mathcal{P}(Q) \rightarrow \mathcal{P}_{\mathcal{W}}(Q) \propto \mathcal{P}(Q) e^{-\beta \mathcal{W}(Q)}
\end{array}\right.
$$

- The curves $\mathcal{P}_{\mathcal{W}}(Q) e^{\beta \mathcal{W}(Q)} \propto \mathcal{P}(Q)$ should collapse on a master curve.
- First possibility: translate the curves in logarthmic scale by hand.

Combining the biased distributions

- How to reconstruct the unbiased distribution $\mathcal{P}(Q)$?
- Biased Hamiltonian + thermal equilibrium:

$$
\left\{\begin{array}{l}
\mathcal{H}(\mathcal{C}) \rightarrow \mathcal{H}(\mathcal{C})+\mathcal{W}\left(\mathcal{Q}\left(\mathcal{C}, \mathcal{C}_{0}\right)\right) \\
\mathcal{P}(Q) \rightarrow \mathcal{P}_{\mathcal{W}}(Q) \propto \mathcal{P}(Q) e^{-\beta \mathcal{W}(Q)}
\end{array}\right.
$$

- The curves $\mathcal{P}_{\mathcal{W}}(Q) e^{\beta \mathcal{W}(Q)} \propto \mathcal{P}(Q)$ should collapse on a master curve.
- First possibility: translate the curves in logarthmic scale by hand.

Combining the biased distributions

- How to reconstruct the unbiased distribution $\mathcal{P}(Q)$?
- Biased Hamiltonian + thermal equilibrium:

$$
\left\{\begin{array}{l}
\mathcal{H}(\mathcal{C}) \rightarrow \mathcal{H}(\mathcal{C})+\mathcal{W}\left(\mathcal{Q}\left(\mathcal{C}, \mathcal{C}_{0}\right)\right) \\
\mathcal{P}(Q) \rightarrow \mathcal{P}_{\mathcal{W}}(Q) \propto \mathcal{P}(Q) e^{-\beta \mathcal{W}(Q)}
\end{array}\right.
$$

- The curves $\mathcal{P}_{\mathcal{W}}(Q) e^{\beta \mathcal{W}(Q)} \propto \mathcal{P}(Q)$ should collapse on a master curve.
- First possibility: translate the curves in logarthmic scale by hand.

Combining the biased distributions

- How to reconstruct the unbiased distribution $\mathcal{P}(Q)$?
- Biased Hamiltonian + thermal equilibrium:

$$
\left\{\begin{array}{l}
\mathcal{H}(\mathcal{C}) \rightarrow \mathcal{H}(\mathcal{C})+\mathcal{W}\left(\mathcal{Q}\left(\mathcal{C}, \mathcal{C}_{0}\right)\right) \\
\mathcal{P}(Q) \rightarrow \mathcal{P} \mathcal{W}(Q) \propto \mathcal{P}(Q) e^{-\beta \mathcal{W}(Q)}
\end{array}\right.
$$

- The curves $\mathcal{P}_{\mathcal{W}}(Q) e^{\beta \mathcal{W}(Q)} \propto \mathcal{P}(Q)$ should collapse on a master curve.
- First possibility: translate the curves in logarthmic scale by hand.

Combining the biased distributions

- How to reconstruct the unbiased distribution $\mathcal{P}(Q)$?
- Biased Hamiltonian + thermal equilibrium:

$$
\left\{\begin{array}{l}
\mathcal{H}(\mathcal{C}) \rightarrow \mathcal{H}(\mathcal{C})+\mathcal{W}\left(\mathcal{Q}\left(\mathcal{C}, \mathcal{C}_{0}\right)\right) \\
\mathcal{P}(Q) \rightarrow \mathcal{P}_{\mathcal{W}}(Q) \propto \mathcal{P}(Q) e^{-\beta \mathcal{W}(Q)}
\end{array}\right.
$$

- The curves $\mathcal{P}_{\mathcal{W}}(Q) e^{\beta \mathcal{W}(Q)} \propto \mathcal{P}(Q)$ should collapse on a master curve.
- First possibility: translate the curves in logarthmic scale by hand.

Combining the biased distributions

- How to reconstruct the unbiased distribution $\mathcal{P}(Q)$?
- Biased Hamiltonian + thermal equilibrium:

$$
\left\{\begin{array}{l}
\mathcal{H}(\mathcal{C}) \rightarrow \mathcal{H}(\mathcal{C})+\mathcal{W}\left(\mathcal{Q}\left(\mathcal{C}, \mathcal{C}_{0}\right)\right) \\
\mathcal{P}(Q) \rightarrow \mathcal{P}_{\mathcal{W}}(Q) \propto \mathcal{P}(Q) e^{-\beta \mathcal{W}(Q)}
\end{array}\right.
$$

- The curves $\mathcal{P}_{\mathcal{W}}(Q) e^{\beta \mathcal{W}(Q)} \propto \mathcal{P}(Q)$ should collapse on a master curve.
- First possibility: translate the curves in logarthmic scale by hand.

Combining the biased distributions

- How to reconstruct the unbiased distribution $\mathcal{P}(Q)$?
- Biased Hamiltonian + thermal equilibrium:

$$
\left\{\begin{array}{l}
\mathcal{H}(\mathcal{C}) \rightarrow \mathcal{H}(\mathcal{C})+\mathcal{W}\left(\mathcal{Q}\left(\mathcal{C}, \mathcal{C}_{0}\right)\right) \\
\mathcal{P}(Q) \rightarrow \mathcal{P}_{\mathcal{W}}(Q) \propto \mathcal{P}(Q) e^{-\beta \mathcal{W}(Q)}
\end{array}\right.
$$

- The curves $\mathcal{P}_{\mathcal{W}}(Q) e^{\beta \mathcal{W}(Q)} \propto \mathcal{P}(Q)$ should collapse on a master curve.
- First possibility: translate the curves in logarthmic scale by hand.

Combining the biased distributions

- How to reconstruct the unbiased distribution $\mathcal{P}(Q)$?
- Biased Hamiltonian + thermal equilibrium:

$$
\left\{\begin{array}{l}
\mathcal{H}(\mathcal{C}) \rightarrow \mathcal{H}(\mathcal{C})+\mathcal{W}\left(\mathcal{Q}\left(\mathcal{C}, \mathcal{C}_{0}\right)\right) \\
\mathcal{P}(Q) \rightarrow \mathcal{P}_{\mathcal{W}}(Q) \propto \mathcal{P}(Q) e^{-\beta \mathcal{W}(Q)}
\end{array}\right.
$$

- The curves $\mathcal{P}_{\mathcal{W}}(Q) e^{\beta \mathcal{W}(Q)} \propto \mathcal{P}(Q)$ should collapse on a master curve.
- First possibility: translate the curves in logarthmic scale by hand.

Combining the biased distributions

- How to reconstruct the unbiased distribution $\mathcal{P}(Q)$?
- Biased Hamiltonian + thermal equilibrium:

$$
\left\{\begin{array}{l}
\mathcal{H}(\mathcal{C}) \rightarrow \mathcal{H}(\mathcal{C})+\mathcal{W}\left(\mathcal{Q}\left(\mathcal{C}, \mathcal{C}_{0}\right)\right) \\
\mathcal{P}(Q) \rightarrow \mathcal{P}_{\mathcal{W}}(Q) \propto \mathcal{P}(Q) e^{-\beta \mathcal{W}(Q)}
\end{array}\right.
$$

- The curves $\mathcal{P}_{\mathcal{W}}(Q) e^{\beta \mathcal{W}(Q)} \propto \mathcal{P}(Q)$ should collapse on a master curve.
- First possibility: translate the curves in logarthmic scale by hand.

Combining the biased distributions

- How to reconstruct the unbiased distribution $\mathcal{P}(Q)$?
- Biased Hamiltonian + thermal equilibrium:

$$
\left\{\begin{array}{l}
\mathcal{H}(\mathcal{C}) \rightarrow \mathcal{H}(\mathcal{C})+\mathcal{W}\left(\mathcal{Q}\left(\mathcal{C}, \mathcal{C}_{0}\right)\right) \\
\mathcal{P}(Q) \rightarrow \mathcal{P} \mathcal{W}(Q) \propto \mathcal{P}(Q) e^{-\beta \mathcal{W}(Q)}
\end{array}\right.
$$

- The curves $\mathcal{P}_{\mathcal{W}}(Q) e^{\beta \mathcal{W}(Q)} \propto \mathcal{P}(Q)$ should collapse on a master curve.
- First possibility: translate the curves in logarthmic scale by hand.

Combining the biased distributions

- How to reconstruct the unbiased distribution $\mathcal{P}(Q)$?
- Biased Hamiltonian + thermal equilibrium:

$$
\left\{\begin{array}{l}
\mathcal{H}(\mathcal{C}) \rightarrow \mathcal{H}(\mathcal{C})+\mathcal{W}\left(\mathcal{Q}\left(\mathcal{C}, \mathcal{C}_{0}\right)\right) \\
\mathcal{P}(Q) \rightarrow \mathcal{P}_{\mathcal{W}}(Q) \propto \mathcal{P}(Q) e^{-\beta \mathcal{W}(Q)}
\end{array}\right.
$$

- The curves $\mathcal{P}_{\mathcal{W}}(Q) e^{\beta \mathcal{W}(Q)} \propto \mathcal{P}(Q)$ should collapse on a master curve.
- First possibility: translate the curves in logarthmic scale by hand.

Combining the biased distributions

- How to reconstruct the unbiased distribution $\mathcal{P}(Q)$?
- Biased Hamiltonian + thermal equilibrium:

$$
\left\{\begin{array}{l}
\mathcal{H}(\mathcal{C}) \rightarrow \mathcal{H}(\mathcal{C})+\mathcal{W}\left(\mathcal{Q}\left(\mathcal{C}, \mathcal{C}_{0}\right)\right) \\
\mathcal{P}(Q) \rightarrow \mathcal{P}_{\mathcal{W}}(Q) \propto \mathcal{P}(Q) e^{-\beta \mathcal{W}(Q)}
\end{array}\right.
$$

- The curves $\mathcal{P}_{\mathcal{W}}(Q) e^{\beta \mathcal{W}(Q)} \propto \mathcal{P}(Q)$ should collapse on a master curve.
- First possibility: translate the curves in logarthmic scale by hand.

Combining the biased distributions

- How to reconstruct the unbiased distribution $\mathcal{P}(Q)$?
- Biased Hamiltonian + thermal equilibrium:

$$
\left\{\begin{array}{l}
\mathcal{H}(\mathcal{C}) \rightarrow \mathcal{H}(\mathcal{C})+\mathcal{W}\left(\mathcal{Q}\left(\mathcal{C}, \mathcal{C}_{0}\right)\right) \\
\mathcal{P}(Q) \rightarrow \mathcal{P}_{\mathcal{W}}(Q) \propto \mathcal{P}(Q) e^{-\beta \mathcal{W}(Q)}
\end{array}\right.
$$

- The curves $\mathcal{P}_{\mathcal{W}}(Q) e^{\beta \mathcal{W}(Q)} \propto \mathcal{P}(Q)$ should collapse on a master curve.
- First possibility: translate the curves in logarthmic scale by hand.
- Reconstruct the probability up to $10^{-180} \rightarrow$ very rare events.

Combining the biased distributions

- Second possibility: use the multiple histogram method [Ferrenberg, Swendsen (1989), Newman, Barkema (1999)].
- Estimate of the probability distribution $\mathcal{P}(Q)$ from the n biased $\mathcal{P}_{\mathcal{W}_{i}}(Q)$ $(i=1, \ldots, n)$ which minimizes the global error:

$$
\left\{\begin{array}{l}
\mathcal{P}(Q)=\frac{\sum_{i=1}^{n} \mathcal{P}_{\mathcal{W}_{i}}(Q)}{\sum_{i=1}^{n} e^{-\beta \mathcal{W}_{i}(Q)} / \mathcal{Z}_{i}}, \quad \text { with } \quad \mathcal{P}_{\mathcal{W}_{i}}(Q)=\frac{1}{\mathcal{Z}_{i}} \mathcal{P}(Q) e^{-\beta \mathcal{W}_{i}(Q)} \\
\mathcal{Z}_{i}=\int_{0}^{1} \mathrm{~d} Q \frac{\sum_{j=1}^{n} \mathcal{P}_{\mathcal{W}_{j}}(Q)}{\sum_{j=1}^{n} e^{\beta\left[\mathcal{W}_{i}(Q)-\mathcal{W}_{j}(Q)\right]} / \mathcal{Z}_{j}} \text { (to be solved self-consistently) }
\end{array}\right.
$$

Combining the biased distributions

- Second possibility: use the multiple histogram method [Ferrenberg, Swendsen (1989), Newman, Barkema (1999)].
- Estimate of the probability distribution $\mathcal{P}(Q)$ from the n biased $\mathcal{P}_{\mathcal{W}_{i}}(Q)$ $(i=1, \ldots, n)$ which minimizes the global error:

$$
\left\{\begin{array}{l}
\mathcal{P}(Q)=\frac{\sum_{i=1}^{n} \mathcal{P}_{\mathcal{W}_{i}}(Q)}{\sum_{i=1}^{n} e^{-\beta \mathcal{W}_{i}(Q)} / \mathcal{Z}_{i}}, \quad \text { with } \quad \mathcal{P}_{\mathcal{W}_{i}}(Q)=\frac{1}{\mathcal{Z}_{i}} \mathcal{P}(Q) e^{-\beta \mathcal{W}_{i}(Q)} \\
\mathcal{Z}_{i}=\int_{0}^{1} \mathrm{~d} Q \frac{\sum_{j=1}^{n} \mathcal{P}_{\mathcal{W}_{j}}(Q)}{\sum_{j=1}^{n} e^{\beta\left[\mathcal{W}_{i}(Q)-\mathcal{W}_{j}(Q)\right]} / \mathcal{Z}_{j}} \text { (to be solved self-consistently) }
\end{array}\right.
$$

- Other possibility: Gaussian ensemble [Challa, Hetherington (1988)].

Combining the biased distributions

- Second possibility: use the multiple histogram method [Ferrenberg, Swendsen (1989), Newman, Barkema (1999)].
- Estimate of the probability distribution $\mathcal{P}(Q)$ from the n biased $\mathcal{P}_{\mathcal{W}_{i}}(Q)$ $(i=1, \ldots, n)$ which minimizes the global error:

$$
\left\{\begin{array}{l}
\mathcal{P}(Q)=\frac{\sum_{i=1}^{n} \mathcal{P}_{\mathcal{W}_{i}}(Q)}{\sum_{i=1}^{n} e^{-\beta \mathcal{W}_{i}(Q)} / \mathcal{Z}_{i}}, \quad \text { with } \quad \mathcal{P}_{\mathcal{W}_{i}}(Q)=\frac{1}{\mathcal{Z}_{i}} \mathcal{P}(Q) e^{-\beta \mathcal{W}_{i}(Q)} \\
\mathcal{Z}_{i}=\int_{0}^{1} \mathrm{~d} Q \frac{\sum_{j=1}^{n} \mathcal{P}_{\mathcal{W}_{j}}(Q)}{\sum_{j=1}^{n} e^{\beta\left[\mathcal{W}_{i}(Q)-\mathcal{W}_{j}(Q)\right]} / \mathcal{Z}_{j}} \text { (to be solved self-consistently) }
\end{array}\right.
$$

- Other possibility: Gaussian ensemble [Challa, Hetherington (1988)].
- Divide and Conquer strategy.

Measuring the (T, ϵ) phase diagram (without further simulations)

- One can compute the overlap probability distribution in the presence of a field ϵ without further simulations:

$$
\mathcal{P}_{\epsilon}(Q)=\frac{\mathcal{P}(Q) e^{N \beta \epsilon Q}}{\int_{0}^{1} \mathrm{~d} Q^{\prime} \mathcal{P}\left(Q^{\prime}\right) e^{N \beta \epsilon Q^{\prime}}}
$$

Measuring the (T, ϵ) phase diagram (without further simulations)

- One can compute the overlap probability distribution in the presence of a field ϵ without further simulations:

$$
\mathcal{P}_{\epsilon}(Q)=\frac{\mathcal{P}(Q) e^{N \beta \epsilon Q}}{\int_{0}^{1} \mathrm{~d} Q^{\prime} \mathcal{P}\left(Q^{\prime}\right) e^{N \beta \epsilon Q^{\prime}}}
$$

Measuring the (T, ϵ) phase diagram (without further simulations)

- One can compute the overlap probability distribution in the presence of a field ϵ without further simulations:

$$
\mathcal{P}_{\epsilon}(Q)=\frac{\mathcal{P}(Q) e^{N \beta \epsilon Q}}{\int_{0}^{1} \mathrm{~d} Q^{\prime} \mathcal{P}\left(Q^{\prime}\right) e^{N \beta \epsilon Q^{\prime}}}
$$

Measuring the (T, ϵ) phase diagram (without further simulations)

- One can compute the overlap probability distribution in the presence of a field ϵ without further simulations:

$$
\mathcal{P}_{\epsilon}(Q)=\frac{\mathcal{P}(Q) e^{N \beta \epsilon Q}}{\int_{0}^{1} \mathrm{~d} Q^{\prime} \mathcal{P}\left(Q^{\prime}\right) e^{N \beta \epsilon Q^{\prime}}}
$$

Measuring the (T, ϵ) phase diagram (without further simulations)

- One can compute the overlap probability distribution in the presence of a field ϵ without further simulations:

$$
\mathcal{P}_{\epsilon}(Q)=\frac{\mathcal{P}(Q) e^{N \beta \epsilon Q}}{\int_{0}^{1} \mathrm{~d} Q^{\prime} \mathcal{P}\left(Q^{\prime}\right) e^{N \beta \epsilon Q^{\prime}}}
$$

Measuring the (T, ϵ) phase diagram (without further simulations)

- One can compute the overlap probability distribution in the presence of a field ϵ without further simulations:

$$
\mathcal{P}_{\epsilon}(Q)=\frac{\mathcal{P}(Q) e^{N \beta \epsilon Q}}{\int_{0}^{1} \mathrm{~d} Q^{\prime} \mathcal{P}\left(Q^{\prime}\right) e^{N \beta \epsilon Q^{\prime}}}
$$

Measuring the (T, ϵ) phase diagram (without further simulations)

- One can compute the overlap probability distribution in the presence of a field ϵ without further simulations:

$$
\mathcal{P}_{\epsilon}(Q)=\frac{\mathcal{P}(Q) e^{N \beta \epsilon Q}}{\int_{0}^{1} \mathrm{~d} Q^{\prime} \mathcal{P}\left(Q^{\prime}\right) e^{N \beta \epsilon Q^{\prime}}}
$$

Measuring the (T, ϵ) phase diagram (without further simulations)

- One can compute the overlap probability distribution in the presence of a field ϵ without further simulations:

$$
\mathcal{P}_{\epsilon}(Q)=\frac{\mathcal{P}(Q) e^{N \beta \epsilon Q}}{\int_{0}^{1} \mathrm{~d} Q^{\prime} \mathcal{P}\left(Q^{\prime}\right) e^{N \beta \epsilon Q^{\prime}}}
$$

Temperature evolution of $V(Q)$ in finite-dimensional systems

- Eventually, one needs to repeat the entire procedure to average over several reference configurations, and at several temperatures.

[Guiselin, Berthier, Tarjus (2022)]
- Total CPU time:

30 simulations $\times 20$ reference configurations $\times 6$ temperatures $\times 4$ system sizes $\simeq 276$ years for 1 CPU .

Temperature evolution of $V(Q)$ in finite-dimensional systems

- Eventually, one needs to repeat the entire procedure to average over several reference configurations, and at several temperatures.

[Guiselin, Berthier, Tarjus (2022)]
- Total CPU time \longrightarrow doable with few hundreds of CPUs (1 PhD $\simeq 3$ years).

30 simulations $\times 20$ reference configurations $\times 6$ temperatures $\times 4$ system sizes
$\simeq 276$ years for 1 CPU .

Temperature evolution of $V(Q)$ in finite-dimensional systems

- Eventually, one needs to repeat the entire procedure to average over several reference configurations, and at several temperatures.

[Guiselin, Berthier, Tarjus (2022)]

Consistent with an underlying equilibrium phase transition.

- Total CPU time \longrightarrow doable with few hundreds of CPUs (1 PhD $\simeq 3$ years).

30 simulations $\times 20$ reference configurations $\times 6$ temperatures $\times 4$ system sizes
$\simeq 276$ years for 1 CPU .

The (T, ϵ) phase diagram in finite-dimensional systems

- Measurement of the (T, ϵ) phase diagram in $2 d / 3 d$ in the thermodynamic limit (Finite-Size-Scaling analysis).

The (T, ϵ) phase diagram in finite-dimensional systems

- Measurement of the (T, ϵ) phase diagram in $2 d / 3 d$ in the thermodynamic limit (Finite-Size-Scaling analysis).
- Close to a critical point, the correlation length diverges:

$$
\xi \sim\left(T-T_{\mathrm{c}}\right)^{-\nu} \underset{T \rightarrow T_{\mathrm{c}}}{\longrightarrow}+\infty
$$

The (T, ϵ) phase diagram in finite-dimensional systems

- Measurement of the (T, ϵ) phase diagram in $2 d / 3 d$ in the thermodynamic limit (Finite-Size-Scaling analysis).
- Close to a critical point, the correlation length diverges:

$$
\xi \sim\left(T-T_{\mathrm{c}}\right)^{-\nu} \underset{T \rightarrow T_{\mathrm{c}}}{\longrightarrow}+\infty
$$

- In a finite-size system, the correlation length saturates to the linear size L of the system.
- In the vicinity of the critical point, all thermodynamic quantities now depend on L :

$$
\chi=\frac{\partial\langle\mathcal{Q}\rangle}{\partial \epsilon}=N \beta\left[\left\langle\mathcal{Q}^{2}\right\rangle-\langle\mathcal{Q}\rangle^{2}\right] \sim L^{2-\eta}
$$

The (T, ϵ) phase diagram in finite-dimensional systems

- Random-Field Ising model criticality (lower critical dimension $=2$).

The configurational entropy in finite-dimensional systems

Berthier, Charbonneau, Coslovich, Ninarello, Ozawa, Yaida (2017)

- Simulations data in $3 d$ are consistent with a Kauzmann transition at $T_{\mathrm{K}}>0$.

Overlap-related measurements in experiments

- Overlap measurements require to know the location of all microscopic constituants \rightarrow restricted to colloidal glasses.
- One can imagine measuring the (ϕ, ϵ) phase diagram (ϕ : packing fraction) with optical tweezers.

Overlap-related measurements in experiments

- Overlap measurements require to know the location of all microscopic constituants \rightarrow restricted to colloidal glasses.
- One can imagine measuring the (ϕ, ϵ) phase diagram (ϕ : packing fraction) with optical tweezers.

Overlap-related measurements in experiments

- Overlap measurements require to know the location of all microscopic constituants \rightarrow restricted to colloidal glasses.
- One can imagine measuring the (ϕ, ϵ) phase diagram (ϕ : packing fraction) with optical tweezers.

Overlap-related measurements in experiments

- Overlap measurements require to know the location of all microscopic constituants \rightarrow restricted to colloidal glasses.
- One can imagine measuring the (ϕ, ϵ) phase diagram (ϕ : packing fraction) with optical tweezers.

- But low degree of supercooling: the glassy slowing down in colloids is only about 6 orders of magnitude.

 \begin{abstract} The point-to-set length - Liquid-glass equilibrium phase transition: long-range order emerging at T_{K}.
 The point-to-set length
 The point-to-set length - Liquid-glass equilibrium phase transition: long-range order emerging at T_{K}.
 Liquid-glass equilibrium phase transition: long-range order emerging at Th.
 \end{abstract}
 gailibrium
 B

\qquad

The point-to-set length

- Liquid-glass equilibrium phase transition: long-range order emerging at T_{K}.
- Analogy with ferromagnetism:
- Imhomogeneous magnetization profile $\mathcal{M}(\mathcal{C}, \boldsymbol{x})$.
- The order parameter is correlated on a length scale $\xi \underset{T \rightarrow T_{\mathrm{c}}^{+}}{\longrightarrow}+\infty$.
- Cavity argument with frozen spins on the boundaries:

The point-to-set length

- Liquid-glass equilibrium phase transition: long-range order emerging at T_{K}.
- Definition of the point-to-set length $\xi_{\text {PTS }}$:
- Imhomogeneous overlap profile $\mathcal{Q}\left(\mathcal{C}, \mathcal{C}_{0}, \boldsymbol{x}\right)$.
- The order parameter is correlated on a length scale $\xi_{\text {PTS }} \underset{T \rightarrow T_{\mathrm{K}}^{+}}{\longrightarrow}+\infty$.
- Cavity argument with frozen particles on the boundaries [Bouchaud, Biroli (2004)]:

The point-to-set length

- Liquid-glass equilibrium phase transition: long-range order emerging at T_{K}.
- Definition of the point-to-set length $\xi_{\text {PTS }}$:
- Imhomogeneous overlap profile $\mathcal{Q}\left(\mathcal{C}, \mathcal{C}_{0}, \boldsymbol{x}\right)$.
- The order parameter is correlated on a length scale $\xi_{\text {PTS }} \underset{T \rightarrow T_{\mathrm{K}}^{+}}{\longrightarrow}+\infty$.
- Cavity argument with frozen particles on the boundaries [Bouchaud, Biroli (2004)]:

The point-to-set length

- Liquid-glass equilibrium phase transition: long-range order emerging at T_{K}.
- Definition of the point-to-set length ξ_{PTS} :
- Imhomogeneous overlap profile $\mathcal{Q}\left(\mathcal{C}, \mathcal{C}_{0}, \boldsymbol{x}\right)$.
- The order parameter is correlated on a length scale $\xi_{\mathrm{PTS}} \underset{T \rightarrow T_{\mathrm{K}}^{+}}{\longrightarrow}+\infty$.
- Cavity argument with frozen particles on the boundaries [Bouchaud, Biroli (2004)]:

Measurements of the point-to-set length

- The point-to-set length can be measured via the measurement of overlap fluctuations in cavities.
- Computer simulations [Biroli, Bouchaud, Cavagna, Grigera, Verrocchio (2008), Berthier, Charbonneau, Yaida (2016)].
- Experiments with colloids using optical tweezers [Nagamanasa, Gokhale, Sood, Ganapathy (2015)].

Measurements of the point-to-set length

- The point-to-set length can be measured via the measurement of overlap fluctuations in cavities.
- Computer simulations [Biroli, Bouchaud, Cavagna, Grigera, Verrocchio (2008), Berthier, Charbonneau, Yaida (2016)].
- Experiments with colloids using optical tweezers [Nagamanasa, Gokhale, Sood, Ganapathy (2015)].
- But still impossible for atomic and molecular glasses.

The mosaic state

- For timescales $\lesssim \tau_{\alpha}$, particles are almost frozen \rightarrow self-induced frozen boundaries.
- Supercooled liquids are mosaics of "glassites" of different density profiles of size $\xi_{\text {PTS }}$ [Kirkpatrick, Thirumalai, Wolynes (1989)].
- Each glassite relaxes independently on a typical timescale τ_{α}.

(This is a cartoon!)

Probing the mosaic state in atomic and molecular glasses

- Liquid of anisotropic molecules in the presence of an oscillatory electric field E at an angular frequency $\omega \sim 1 / \tau_{\alpha}$ [Bouchaud, Biroli (2005)].

Molecule of glycerol.

- Each glassite responds collectively with a typical induced dipolar moment $p_{\mathrm{g}}=\mu_{\mathrm{dip}}\left(\xi_{\mathrm{PTS}} / \ell\right)^{d / 2}$ (random orientations):

$$
\boldsymbol{p}_{\mathbf{g}}=\sum_{i \in \text { glassite }} \boldsymbol{p}_{i} \Longrightarrow\{
$$

Probing the mosaic state in atomic and molecular glasses

- Liquid of anisotropic molecules in the presence of an oscillatory electric field E at an angular frequency $\omega \sim 1 / \tau_{\alpha}$ [Bouchaud, Biroli (2005)].

Molecule of glycerol.

- Each glassite responds collectively with a typical induced dipolar moment $p_{\mathrm{g}}=\mu_{\mathrm{dip}}\left(\xi_{\mathrm{PTS}} / \ell\right)^{d / 2}$ (random orientations):

$$
\boldsymbol{p}_{\mathbf{g}}=\sum_{i \in \text { glassite }} \boldsymbol{p}_{i} \Longrightarrow\left\{\begin{array}{l}
\left\langle\boldsymbol{p}_{\mathrm{g}}\right\rangle=\mathbf{0} \\
\end{array}\right.
$$

Probing the mosaic state in atomic and molecular glasses

- Liquid of anisotropic molecules in the presence of an oscillatory electric field E at an angular frequency $\omega \sim 1 / \tau_{\alpha}$ [Bouchaud, Biroli (2005)].

Molecule of glycerol.

- Each glassite responds collectively with a typical induced dipolar moment $p_{\mathrm{g}}=\mu_{\mathrm{dip}}\left(\xi_{\mathrm{PTS}} / \ell\right)^{d / 2}$ (random orientations):

$$
\boldsymbol{p}_{\mathbf{g}}=\sum_{i \in \text { glassite }} \boldsymbol{p}_{i} \Longrightarrow\left\{\begin{array}{l}
\left\langle\boldsymbol{p}_{\mathrm{g}}\right\rangle=\mathbf{0} \\
\left\langle\boldsymbol{p}_{\mathrm{g}}^{2}\right\rangle \simeq \sum_{i \in \text { glassite }} \boldsymbol{p}_{i}^{2}=\left(\frac{\xi_{\mathrm{PTS}}}{\ell}\right)^{d} \mu_{\mathrm{dip}}^{2}
\end{array}\right.
$$

- Total dipole density of a sample:

$$
P=\frac{p_{\mathrm{g}}}{\left(\xi_{\mathrm{PTS}} / \ell\right)^{d}}
$$

- Total dipole density of a sample:

$$
P=\frac{p_{\mathrm{g}}}{\left(\xi_{\mathrm{PTS}} / \ell\right)^{d}} \mathcal{F}\left(\frac{p_{\mathrm{g}} E}{k_{\mathrm{B}} T}\right)
$$

Probing the mosaic state in atomic and molecular glasses

- Total dipole density of a sample:

$$
P=\frac{p_{\mathrm{g}}}{\left(\xi_{\mathrm{PTS}} / \ell\right)^{d}} \mathcal{F}\left(\frac{p_{\mathrm{g}} E}{k_{\mathrm{B}} T}\right)=\mu_{\mathrm{dip}}\left(\frac{\xi_{\mathrm{PTS}}}{\ell}\right)^{-d / 2} \mathcal{F}\left(\frac{\mu_{\mathrm{dip}}\left(\xi_{\mathrm{PTS}} / \ell\right)^{d / 2} E}{k_{\mathrm{B}} T}\right) .
$$

Probing the mosaic state in atomic and molecular glasses

- Total dipole density of a sample:

$$
P=\frac{p_{\mathrm{g}}}{\left(\xi_{\mathrm{PTS}} / \ell\right)^{d}} \mathcal{F}\left(\frac{p_{\mathrm{g}} E}{k_{\mathrm{B}} T}\right)=\mu_{\mathrm{dip}}\left(\frac{\xi_{\mathrm{PTS}}}{\ell}\right)^{-d / 2} \mathcal{F}\left(\frac{\mu_{\mathrm{dip}}\left(\xi_{\mathrm{PTS}} / \ell\right)^{d / 2} E}{k_{\mathrm{B}} T}\right) .
$$

- Total dielectric susceptibilities $\chi^{(k)} \propto \frac{\partial^{k} P}{\partial E^{k}}$:

$$
\chi^{(1)} \propto \frac{\mu_{\mathrm{dip}}^{2}}{k_{\mathrm{B}} T}, \quad \chi^{(3)} \propto \frac{\mu_{\mathrm{dip}}^{4}}{\left(k_{\mathrm{B}} T\right)^{3}}\left(\frac{\xi_{\mathrm{PTS}}}{\ell}\right)^{d}, \quad \chi^{(5)} \propto \frac{\mu_{\mathrm{dip}}^{6}}{\left(k_{\mathrm{B}} T\right)^{5}}\left(\frac{\xi_{\mathrm{PTS}}}{\ell}\right)^{2 d}
$$

Probing the mosaic state in atomic and molecular glasses

- Total dipole density of a sample:

$$
P=\frac{p_{\mathrm{g}}}{\left(\xi_{\mathrm{PTS}} / \ell\right)^{d}} \mathcal{F}\left(\frac{p_{\mathrm{g}} E}{k_{\mathrm{B}} T}\right)=\mu_{\mathrm{dip}}\left(\frac{\xi_{\mathrm{PTS}}}{\ell}\right)^{-d / 2} \mathcal{F}\left(\frac{\mu_{\mathrm{dip}}\left(\xi_{\mathrm{PTS}} / \ell\right)^{d / 2} E}{k_{\mathrm{B}} T}\right) .
$$

- Total dielectric susceptibilities $\chi^{(k)} \propto \frac{\partial^{k} P}{\partial E^{k}}$:

$$
\chi^{(1)} \propto \frac{\mu_{\mathrm{dip}}^{2}}{k_{\mathrm{B}} T}, \quad \chi^{(3)} \propto \frac{\mu_{\mathrm{dip}}^{4}}{\left(k_{\mathrm{B}} T\right)^{3}}\left(\frac{\xi_{\mathrm{PTS}}}{\ell}\right)^{d}, \quad \chi^{(5)} \propto \frac{\mu_{\mathrm{dip}}^{6}}{\left(k_{\mathrm{B}} T\right)^{5}}\left(\frac{\xi_{\mathrm{PTS}}}{\ell}\right)^{2 d}
$$

- The linear susceptibility remains finite at T_{K} (fluctuation-dissipation theorem), but non-linear susceptibilities should diverge.

Probing the mosaic state in atomic and molecular glasses

[Brun, Ladieu, L'Hote, Tarzia, Biroli, Bouchaud (2011)]

[Albert, Bauer, Michl, Biroli, Bouchaud, Loidl, Lunkenheimer, Tourbot, Wiertel-Gasquet, Ladieu (2016)]

- Experiments and simulations report a modest increase in $\xi_{\text {PTS }}$ by a factor of 2 .

Conclusions

- Static overlap fluctuations allow to probe the structure of the configuration space (free energy landscape).
- Well-defined (but not straightforward) strategies to study these fluctuations in simulations and experiments.
- Glass transition: overlap fluctuations reveal an underlying equilibrium phase transition towards an ideal glass phase at T_{K}.
- The overlap is a good static descriptor of the configuration space for disordered complex systems in general (not only glasses).

Conclusions

[Chardac, Shankar, Marchetti, Bartolo (2021)]

Conclusions

- Static overlap fluctuations allow to probe the structure of the configuration space (free energy landscape).
- Well-defined (but not straightforward) strategies to study these fluctuations in simulations and experiments.
- Glass transition: overlap fluctuations reveal an underlying equilibrium phase transition towards an ideal glass phase at T_{K}.
- The overlap is a good static descriptor of the configuration space for disordered complex systems in general (not only glasses) [Chardac, Shankar, Marchetti, Bartolo (2021)].

[^0]:
 .

[^1]: \longrightarrow

