

Real contact area reduction under shear in elastomer/glass contacts : contributing mechanisms for wide range of normal loads

Davy Dalmas

Mariana De Souza & Vito Acito,

Julien Scheibert, S. Dancette, E. Maire, Jakub Lengiewicz and **Stanislaw Stupkiewicz**

Laboratoire de Tribologie et Dynamique des **S**ystèmes LTDS UMR 5513 http://ltds.ec-lyon.fr

General context: elastomeric contact_TDS

Elastomer is a rubber-like polymer with non-linear elastic behaviour, low elastic modulus, high friction and high adhesion

In daily life

Shoe/road

Tyre/road

In technological systems

Soft robotics

Haptic system

Sliding onset/transition is a practical issue

General context: onset of sliding surfaces

General context: onset of sliding for elastomers

Sliding onset/transition is a theoretical issue

Savkoor, A. R., & Briggs, G. A. D. (1977), Waters, J. F., & Guduru, P. R. (2010), Sahli, R. (2018), Nergel, J. C. (2020)

Scientific context: real contact area ITD

¹ F. P. Bowden and D. Tabor. "The Friction and Lubrication of Solids", Oxford University Press, London; England, 1950.

Scientific context: real contact area ITIS

Objectives

Objectives and Methods

To identify the elementary mechanisms responsible for contact area variation and their relative contributions and to better characterize/localize the sliding transition

Experiments on a laboratory-built tribometer on model interface with in-situ visualization :

Model interface :

- Sphere/Plate
- PDMS/Glass
- Dry friction

Experimental methods: samples

PDMS/glass dry interface

Incorporation of particles close to the PDMS sphere surface

Silver particles:

- Located close to the sphere surface
- Visible by the camera
- Thin layer of particles

The bright spots present in the images were used as tracers of the contact evolution

*Only the tracers at the vertical of the contact regions are visible

Experimental methods: optomechanical instrument

Results : in-situ contact observation TDS

J. Lengiewicz, M. de Souza et al., Journal of the Mechanics and Physics of Solids 143 (2020), p. 104056.

Results : in-situ contact observation TDS

Mechanisms of contact area reduction

Mechanisms of contact area reduction

Graphical approach to quantify the contribution of contact lifting and laying

Voronoi tessellation based method:

Contact LIFTING is the main contribution

Mechanisms of contact area reduction

<u>Three mechanisms : (i) Contact LIFTING (main contribution),</u> (ii) Contact Laying and (iii) in plane deformation.

J. Lengiewicz, <u>M. de Souza</u> et al., Journal of the Mechanics and Physics of Solids 143 (2020), p. 104056.

Sliding transition : partial slip

Three successive stages: (1-2) a stuck stage

(2-4) a partial slip stage

(4-5) a classical steady-state sliding

Sliding transition : micro slip front

Last tracer to slip

A micro-slip front moves from the contact periphery inward the contact region as shear increases and is responsible for the in plane deformation

Finite element approach

Collaboration with Jakub Lengiewicz¹ et Stanislaw Stupkiewicz¹

Hypothesis that the reduction of the contact area under shearing is an effect of deformation due to interfacial friction

¹ Institute of Fundamental Technological Research (IPPT), Polish Academy of Sciences.

Experiment vs Simulation

Qualitative validation of the elementary mechanisms by comparison with finite deformation model

1 mm

1 mm

 d_3

1 mm

 d_0

1 mm

Experiment vs Simulation

Take home message

Contact area reduction under shear, at large load, is:

- due to contact lifting/laying and in-plane deformation (partial slip front)
 - an effect of large deformation due to high interfacial shear strength