Avalanche phase diagram for thermally activated yielding in amorphous solids

University of British Columbia, Vancouver

and the set of the set

Natural Sciences and Engineering Research Council of Canada Conseil de recherches en sciences naturelles et en génie du Canada *

La Plagne et Tignes (4000 avalanches, 3 years)

Slab Size: Height * Crown Crack Length (S = hL) J. Faillettaz 2002 et al.

Why power-laws? Self-organized criticality!

- Two ingredients:
 - 1. Loading: Grains added one grain at a time
 - 2. Avalanching: grains can fall, and knock into other grains, causing them to fall
- System self-tunes to a critical point
 - Power-law fluctuations or avalanches
 - Highly sensitive to input, single skier / grain of sand can create a huge avalanche (susceptibility goes to infinity)

Why power-laws? Self-organized criticality!

- Two ingredients:
 - 1. Loading: Grains added one grain at a time
 - 2. Avalanching: grains can fall, and knock into other grains, causing them to fall
- System self-tunes to a critical point
 - Power-law fluctuations or avalanches
 - Highly sensitive to input, single skier / grain of sand can create a huge avalanche (susceptibility goes to infinity)

35.99

Can quickly driven avalanches be critical?

Driven neuronal avalanches can be critical

Driven rice avalanches are NOT critical

• Rice pile, critical for new grains at rate $\lambda < \lambda_c(L) \sim 1/L^{(1+z-D)\approx 0.2}$

Álvaro Corral and Maya Paczuski, PRL, 1999

Kim Christensen, Nicholas R. Moloney, 2005

Objectives

- 1. Convince you self-organized criticality and avalanches are interesting
- 2. Introduce avalanches in amorphous solids with an "elastoplastic" model
- 3. Show you what happens when avalanches are also activated by temperature fluctuations

Crystalline

Amorphous

Crystalline

Amorphous

Amorphous solid graphic: opentextbc.ca

Schematic yielding transition of amorphous solid

Crystalline

Amorphous

Schematic yielding transition of amorphous solid

Crystalline

Amorphous

Schematic yielding transition of amorphous solid

Universal scale-free avalanches

• Common feature: Local shear transformations

Universal scale-free avalanches

- Common feature: Local shear transformations
- Beautiful scaling theory in athermal quasistatic (AQS) limit, distinct from depinning
- Avalanches proceed through sheartransformations with quadrupolar interactions

Amorphous solid graphic: opentextbc.ca

Coarse grain to level of shear transformation sites

- Sites elastically coupled (finite element)
- Site *i* yields when local stress Σ_i exceeds a local threshold $\Sigma_{y,i}$, i.e. $x_i = \Sigma_{y,i} |\Sigma_i| = 0$
- Site yield time $\tau_{plastic}$

Coarse grain to level of shear transformation sites

- Sites elastically coupled (finite element)
- Site *i* yields when local stress Σ_i exceeds a local threshold $\Sigma_{y,i}$, i.e. $x_i = \Sigma_{y,i} |\Sigma_i| = 0$

For review of mesoscopic models, see Nicolas et al. Rev. Mod. Phys. 90, 045006

Coarse grain to level of shear transformation sites

- Sites elastically coupled (finite element)
- Site *i* yields when local stress Σ_i exceeds a local threshold $\Sigma_{y,i}$, i.e. $x_i = \Sigma_{y,i} |\Sigma_i| = 0$
- Site yield time $\tau_{plastic}$

Residual stress

Coarse grain to level of shear transformation sites

- Sites elastically coupled (finite element)
- Site *i* yields when local stress Σ_i exceeds a local threshold $\Sigma_{y,i}$, i.e. $x_i = \Sigma_{y,i} |\Sigma_i| = 0$

Residual stress

• Site yield time $au_{plastic}$

C. Ruscher and J. Rottler, Soft Matter 16, 8940 (2020).

Coarse grain to level of shear transformation sites

- Sites elastically coupled (finite element)
- Site *i* yields when local stress Σ_i exceeds a local threshold $\Sigma_{y,i}$, i.e. $x_i = \Sigma_{y,i} |\Sigma_i| = 0$

 10^{-4}

 10^{-2}

C. Ruscher and J. Rottler, Soft Matter 16, 8940 (2020).

Stress,

Strain, γ

- Strong finite-size effects
- Interdependence with avalanche scaling

D. Korchinski, C. Ruscher, and J. Rottler, Phys. Rev. E **104**, 034603 (2021).

10⁻³

= 512

 10^{-5}

 10^{-7}

10⁰

0.52

 10^{-1}

Coarse grain to level of shear transformation sites

- Sites elastically coupled (finite element)
- Site *i* yields when local stress Σ_i exceeds a local threshold $\Sigma_{v,i}$, i.e. $x_i = \Sigma_{v,i} - |\Sigma_i| = 0$
- Or stochastically, with Arrhenius rate $\lambda(x) = \frac{1}{\tau_{plastic}} \exp\left[-\frac{x^{\alpha}}{T}\right]$

See:

Marko Popović et al. 2021

Ezequiel Ferrero et al. 2021

For studies of this model and rheological temperature dependence

Results: Residual stress distribution

• $p(x) \sim x^{\theta}$ for T = 0 and large L

Results: Residual stress distribution

- $p(x) \sim x^{\theta}$ for T = 0 and large L
- Thermal activation scale: $x_c \sim T^{\frac{1}{\alpha}}$

What happens to avalanches with temperature?

- Partly answered in molecular dynamics (See: Karmakar et al. PRE. 2010)
 - Expect driving rate / temperature dominated regimes
 - Crossovers depend on system size
 - Herschel-Bulkley stress-rise occurs as avalanches overlap

What happens to avalanches with temperature?

- Partly answered in molecular dynamics (See: Karmakar et al. PRE. 2010)
 - Expect driving rate / temperature dominated regimes
 - Crossovers depend on system size
 - Herschel-Bulkley stress-rise occurs as avalanches overlap
- Elastoplastic models expose several new aspects:
 - Residual stress distribution
 - Can probe very long timescales / low temperatures

Results: Phase diagram

- Most phase lines originate from competition of timescales
- Main timescales
 - $\tau_{plastic}$ the ST plastic time

Results: Phase diagram

- Most phase lines originate from competition of timescales
- Main timescales
 - $\tau_{plastic}$ the ST plastic time

Results: Phase diagram

- Most phase lines originate from competition of timescales
- Main timescales
 - + $au_{plastic}$ the ST plastic time

Thermal activation time:
$$t = \tau_{plastic}$$

 $x = 0$
 $x_c = T^{\frac{1}{\alpha}}$

Mechanical activation time: $t = x_c/\dot{x}$

Results: Phase diagram

- Most phase lines originate from competition of timescales
- Main timescales
 - $\tau_{plastic}$ the ST plastic time

Temperature effects \gg driving rate effects

Thermal activation time: $t = \tau_{plastic}$

$$x = 0$$

$$x_c = T^{\frac{1}{\alpha}}$$

Mechanical activation time: $t = x_c / \dot{x}$

Results: Phase diagram

- Most phase lines originate from competition of timescales
- Main timescales
 - $\tau_{plastic}$ the ST plastic time
 - t_{load} between avalanches

Calculated using extreme value statistics on p(x)Temperature effects \gg driving rate effects

Results: Phase diagram

- Most phase lines originate from competition of timescales
- Main timescales
 - $\tau_{plastic}$ the ST plastic time
 - t_{load} between avalanches

Temperature effects \gg driving rate effects

- Most phase lines originate from competition of timescales
- Main timescales
 - $\tau_{plastic}$ the ST plastic time
 - t_{load} between avalanches

Temperature effects \gg driving rate effects

- Most phase lines originate from competition of timescales
- Main timescales
 - $\tau_{plastic}$ the ST plastic time
 - t_{load} between avalanches

Temperature effects \gg driving rate effects

- Most phase lines originate from competition of timescales
- Main timescales
 - $\tau_{plastic}$ the ST plastic time
 - t_{load} between avalanches

Temperature effects \gg driving rate effects

- Most phase lines originate from competition of timescales
- Main timescales
 - $\tau_{plastic}$ the ST plastic time
 - t_{load} between avalanches

Temperature effects \gg driving rate effects

• Temperature reduces avalanche size:

$$\langle S \rangle = t_{load} \dot{\gamma} \text{ (steady state)}$$

$$\langle S \rangle \sim T^{-\frac{\theta}{\alpha}} \text{ for } T > T_c \sim L^{-\frac{d\alpha}{\theta+1}}$$

$$\langle S \rangle \sim L^{-\frac{d}{1+\theta}} \text{ for } T < T_c$$

Crossing L, T phase line

• Temperature reduces avalanche size when:

$$T > T_c \sim L^{-\frac{d\alpha}{\theta+1}}$$

Crossing L, T phase line

• Temperature reduces avalanche size when:

$$T > T_c \sim L^{-\frac{d\alpha}{\theta+1}}$$

- $s_c \sim \min(L,\xi(T))^{d_f}$
- Rescaling also works for avalanche duration

• Temperature reduces avalanche size when:

$$T > T_c \sim L^{-\frac{d\alpha}{\theta+1}}$$

 Interpretation: correlation length & avalanches truncated by either system size or temperature effects

Material softening at low driving

• At low driving rates, system fluctuates around a lower flow stress that depends on temperature:

$$\langle \Sigma \rangle(T) = \Sigma_c - \Delta \Sigma(T)$$

Material softening at low driving

• At low driving rates, system fluctuates around a lower flow stress that depends on temperature:

$$\langle \Sigma \rangle(T) = \Sigma_c - \Delta \Sigma(T)$$

1

• Is the stress gap
$$\Delta\Sigma \sim x_c \sim T^{\frac{1}{\alpha}}$$
?

Material softening at low driving

• At low driving rates, system fluctuates around a lower flow stress that depends on temperature:

$$\langle \Sigma \rangle(T) = \Sigma_c - \Delta \Sigma(T)$$

1

• Is the stress gap
$$\Delta \Sigma \sim x_c \sim T^{\frac{1}{\alpha}}$$
? No!

$$\Delta \Sigma \sim T^{\frac{\theta \sigma}{\alpha(2-\tau)}}$$

• Avalanches drive the stress gap

What happens under strong driving?

Avalanches overlap, stress rises ⇒ Herschel-Bulkley flow:

 $\langle \Sigma \rangle (\dot{\gamma}) - \Sigma_c = \dot{\gamma}^n$

Scaling relation from avalanches: $\beta = \frac{1}{n} = \nu(d - d_f + z)$

Correlations with low driving

Joel T. Clemmer, K. Michael Salerno, and Mark O. Robbins Phys. Rev. E 2021

Correlations dimmish with high driving

• Temperature reduces flowstress

Crossing T, $\dot{\gamma}$ phase line

- Temperature reduces flowstress
- Naïve Herschel-Bulkley fits $\langle \Sigma \rangle(T) = \Sigma_c(T) + C \dot{\gamma}^n$

• Temperature reduces flowstress

• Temperature reduces flowstress

A sharp exponent transition?

Or a logarithmic transition? (à la Dr. Jeudy's depinning talk)

Conclusions

- Amorphous yielding is only SOC for (size dependent) slow driving and temperatures
- When do thermal effects appear? $\dot{\gamma} < \dot{\gamma}_c = \frac{1}{\tau} T^{\frac{1}{\alpha}}$
- Correlation length truncated by L or T
- Nontrivial *T* dependent rheology

For details, see: PhysRevE.106.034103 or say hi!

Avalanche size, system size, temperature

Avalanche size, system size, temperature

Avalanche time FSS

• $\tau_t \approx 2$

Size time scaling

Size FSS

Avalanche duration and temperature

Temperature and duration collapse

