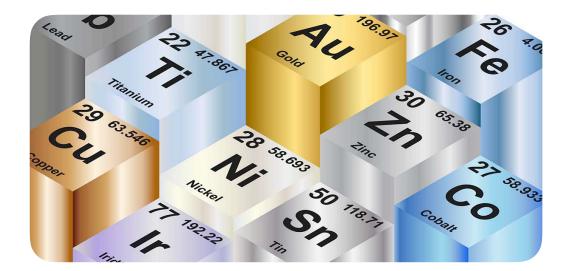

Centre of Excellence in Multifunctional Materials for Industrial and Medical Applications

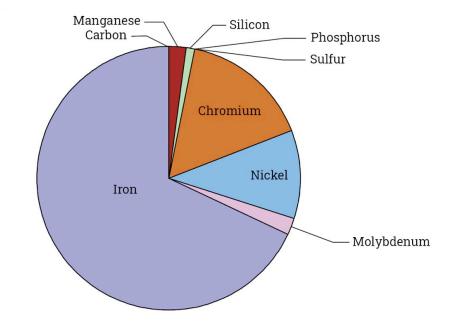
QUASI-LOCALIZED MODES IN CRYSTALLINE HIGH ENTROPY ALLOYS

Silvia Bonfanti NOMATEN

Interaction, Disorder, Elasticity workshop – École de Physique des Houches – April 2-7, 2023

Outline

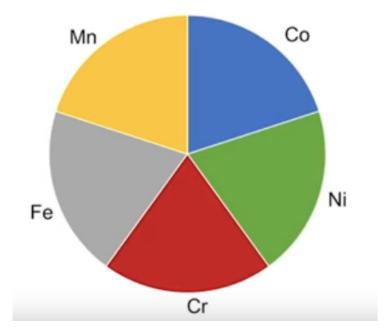

- High Entropy Alloys
- Microscopic Structure
- Vibrational Properties
- Disorder
- Future perspectives


TRADITIONAL ALLOYS

ONE/TWO MAJOR METALLIC ELEMENTS + SMALLER AMOUNT OF MINOR ELEMENTS

Different alloy families

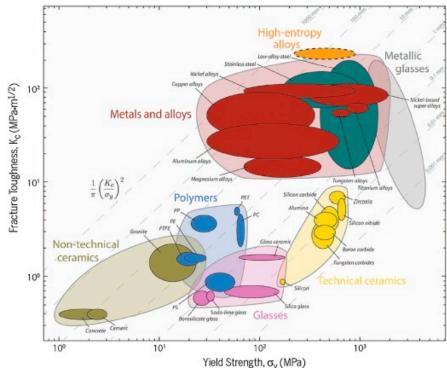
E.g.: Stainless Steel Composition


HIGH ENTROPY ALLOYS (2004)

PROF. YEH @ UNI TAIWAN

PROF. CANTOR @ CALTECH

THE IDEA: MIX SEVERAL (>4) SPECIES IN SAME PROPORTION!



HIGH ENTROPY ALLOYS = IMPROVED PROPERTIES

PERIODIC TABLE OF ELEMENTS

1 H Hydragen Honest		1 Atomic Number												PubChem						
3 Li Uthur Abd Brod	4 Be Deryillum Materia Mate			H	H		Symbol Name					5 B Baren Veralisat	6 C Carbon Normali	7 N Mirogen Hermeter	8 Oropen James	9 F Dacetere Notagee	10 Nee Nece			
11 Na Sodurt	12 Mg	Nonmetal Chemical Group Block										13 Al Aurinum Marinum	14 Silcon Manada	15 P Phaspharus Normali	16 S	17 Cl Charles Margar	18 Ar Argen Main Law			
19 K Potassian Automati	20 Ca Catilian Manager 1 Marg	21 Sc.	22 Ti Titanium Titanium	23 Venaeluer	24 Cr	25 Mn	26 Fe Ive	27 Co 0.0001	28 Ni Michael Transfort Hotel	29 Cu cupper transfer	30 Zn 2100	31 Ga cultur	32 Ge Sernarken Monor	33 As //www.	34 Se 34 34	35 Br	36 Kr 1792500			
37 Rb	38 Sr Storetare Historic Larib Made	39 Y Yitzhan Tangtisa basi	40 Zr Erorekur	41 Nb Motorer	42 Mo	43 TC Technerikars	44 Ru Ru Materiari	45 Rh	46 Pd Feliedure	47 Ag	48 Cd Cedenter	49 In Internet	Sn	51 Sb Antimetry	52 Televier	53	54 Xee			
55 Cs Creture	56 Ba Letar		72 Hff Nationary	73 Ta Tertaken	74 W Turgatan	75 Re Renker	76 Os Oreitur	77 Ir Holum	78 Pt Patinum	79 Au 600	80 Hg Mecury	81 Til Thelium	82 Pb	83 Bi Birnati	84 PO	85 At	86 Rn Ester			
87 Francian And Meri	88 Ra Rature		104 Rf Retentorition	105 Db Datestan	106 Sg	107 Bh Echian	108 Hss Hasslare Transfer Here	109 Mt	110 DS Dermatadium	ntin Rg	112 Cn Copernichum	113 Nh Nicelan	114 Fl Flerevium	115 Mc	116 Lv Lventerium	117 TS Terresulter	118 Og Ogeneseet			
			57 La	58 Ce	59 Pr	60 Nd	61 Pm	Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu			
			89 AC Active	90 Th Instan	91 Pa Protectionar Arrow	92 U U Uranium Arcide	93 Np Netterlar	94 Putorium Jutorium	95 Am	96 Cm Lurian Lurian	97 Bk Jerselar	98 Cf Calterium arous	99 Es Erotolitum Arcite	100 Female Arcente	101 Md Mentelevium	102 NO Notesture	103 Lr			

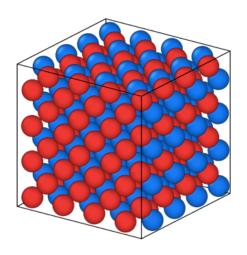
50 METALS: INFINITE POSSIBILITIES OF COMBINATION HIGH ENTROPY OF MIXING ALTER THE INTERACTION OF ELEMENTS: COCKTAIL EFFECT

MECHANICAL THERMODYNAMIC CORROSION RESISTANCE...

HIGH ENTROPY ALLOYS = IMPROVED PROPERTIES

PERIODIC TABLE OF ELEMENTS

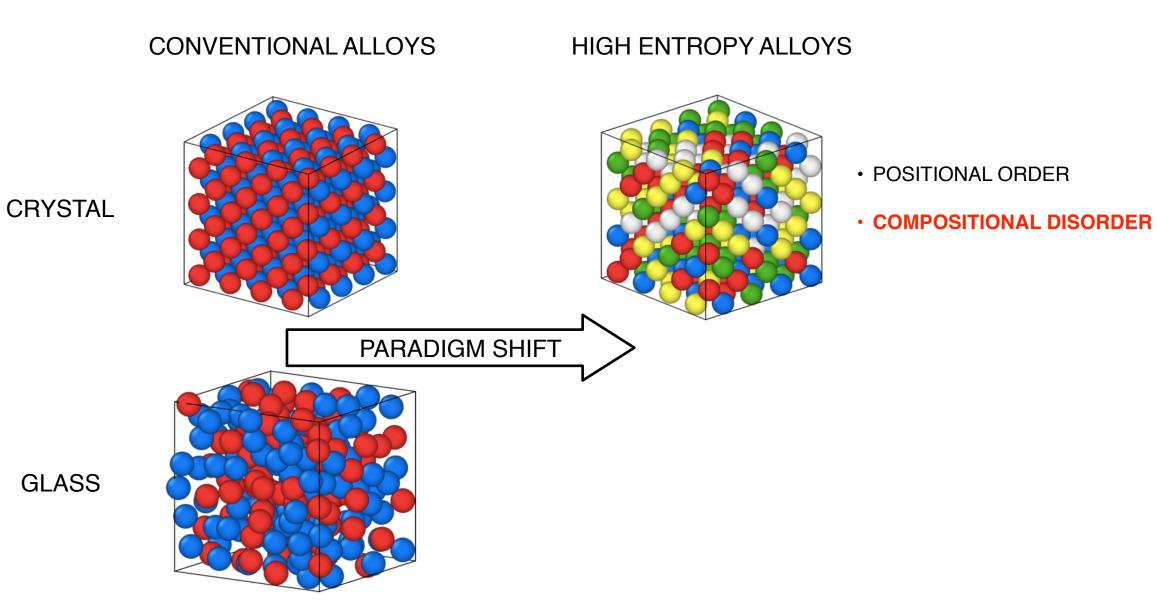
1 H Hydrogen bonesid		1 Atomic Number												2 He Melare Melare			
3 Li UNian Abditional	4 Be Deryillum Malar Land Mala				H	Nam	10	bol					6 C Carbon Normal	7 N Nirogen Nirosen	8 O Oropen Numeri	9 F Decrine Notes	10 Nee Nece
11 Na Sodurt Antimest	12 Mg				Nonmetal Chemical Group Block							13 Alexinum Aserinum	14 Sil Silcon Mentelit	15 P Phaspharus Normate	16 Satur Januar	17 Cl Chierine Religer	18 Ar Arpon Mass dat
19 K Potassian Anal Most	20 Calcium Calcium	21 Sc Scandian Transformer	22 Ti Tranium Tranium	23 Venadium Transference	24 Cr Chaselant Translant	25 Mn Marganese Turnese	26 Fe Iso	27 Co Co Columit Transformerer	28 Ni Notest Transformer	29 Cu Cupper Transformer	30 Zn 200	31 Ga culture	32 Ge Servanken Misson	33 As //secie	34 Se Selecter Turnet	35 Br Br	36 Kr Kryssee Noon tur
37 Rb	38 Sr Storether Material Mate	39 Y Yorken	40 Zr Zr	41 Nb Noteser	42 Mo	43 TC Technellur	44 Ru Pothenium	45 Rh	46 Pd reference	47 Ag	48 Cd 	49 In Indust	Sn 50	51 Sb Antimetry Noted	52 Te	53 L Koline Nature	54 Xe Xeoon Xeoon
55 CS Cesture	56 Ba Letur		72 Hff Nationary	73 Ta Tartakan	74 W Turgatan	75 Re Renker	76 Os Oreitur	77 Ir HSun	78 Pt Petrum	79 Au 600	80 Hg	81 TI Trailium	82 Pb Leed	83 Bi Bireath	84 PO	85 At Ataine	86 Rn Res Res
87 Franciare Abali Meral	88 Ra Rature Rature		104 Rf Authoritoritium Teoretion teoret	105 Db Dubeium	106 Sg	107 Bh Iotrian	108 Hss Hassian Tunatan Mena	109 Mt	110 DS Dermetadium Terretor terret	111 Rg	112 Copernichan Vocale text	113 Nh Nitosium	114 Fl Fleravium	115 Mc	116 Lv Uvermarium	117 TS Terreacies	118 Og Operander Note for
			57 La	58 Ce	59 Pr	60 Nd	61 Pm	Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu
			89 AC Activities	90 Th Instan	91 Pa Protectionar Arrow	92 U Uranium Arcole	93 Np Nettalan	94 Pu Putoelam	95 Am	96 Cm Lurian Lurian	97 Bk Jerselan	98 Cf Caltorium	99 Es Linsteinum Arctiste	100 Fm	101 Md Mendelevieur	102 NO Notekari Linita	103 Lr Lawrenclum

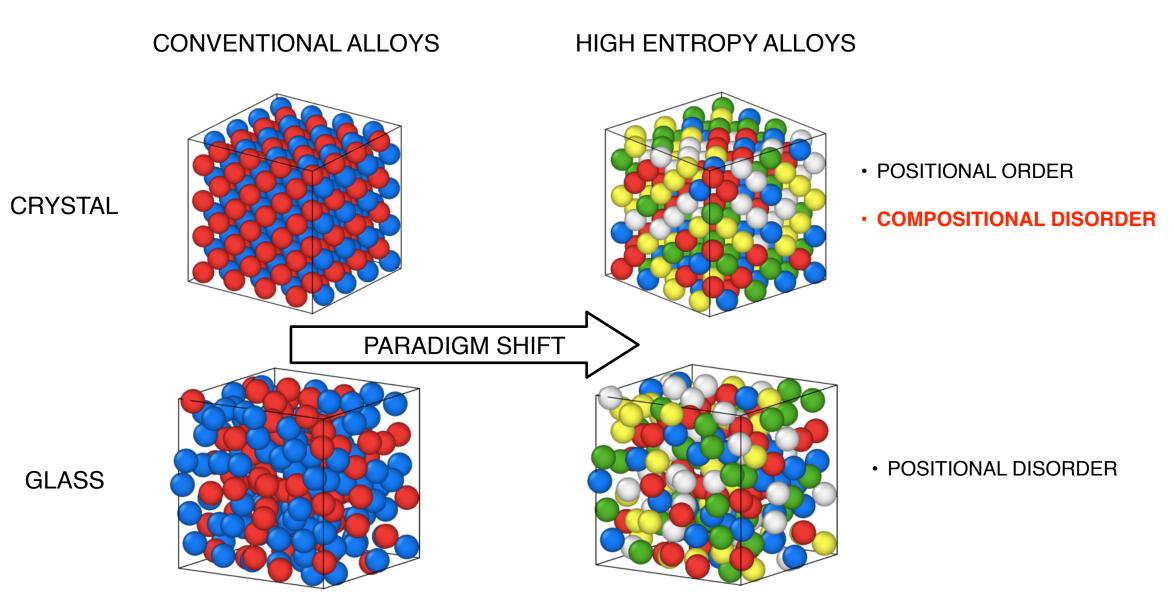


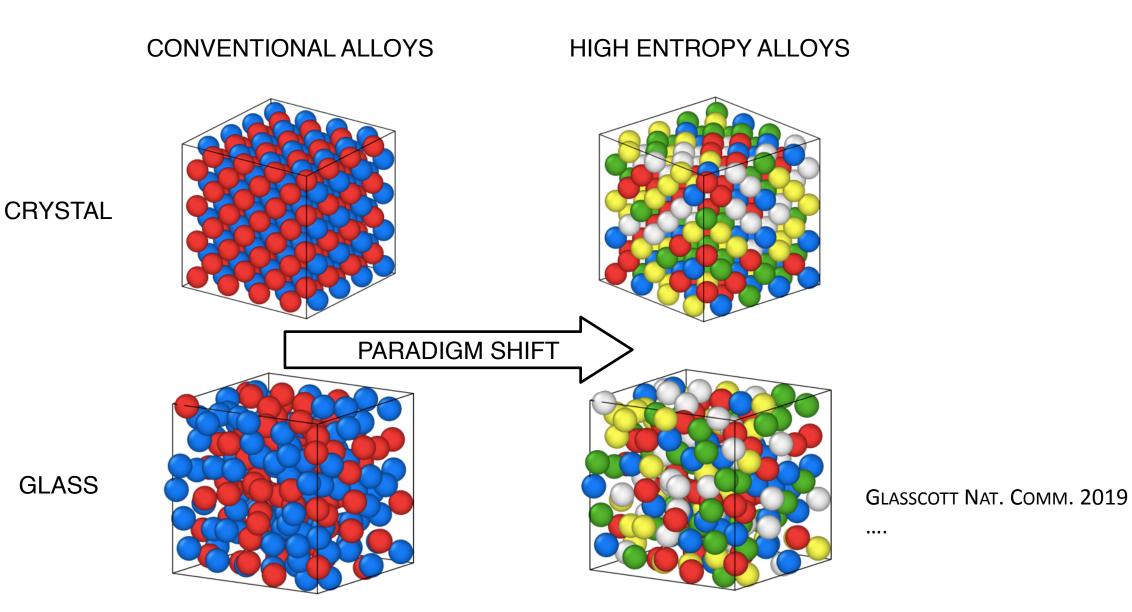
50 METALS: INFINITE POSSIBILITIES OF COMBINATION

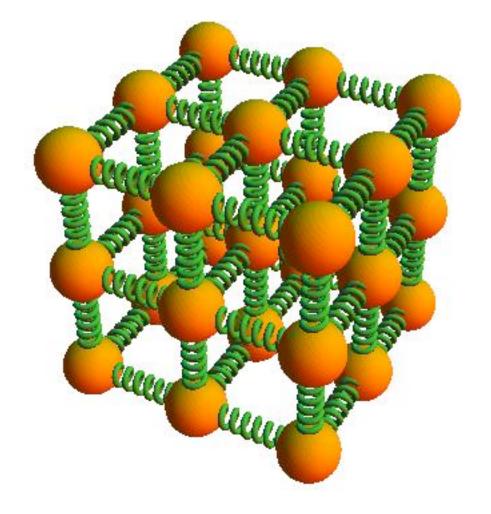
HIGH ENTROPY OF MIXING ALTER THE INTERACTION OF ELEMENTS: COCKTAIL EFFECT

US: STRUCTURE-PROPERTIES HOW? MODELING (MD)


CONVENTIONAL ALLOYS




CRYSTAL



VIBRATIONAL PROPERTIES

VIBRATION OF CONFIG. AROUND MINIMA

CRYSTALS, PERIODIC LATTICE:

DEBYE'S THEORY PREDICTS

$$D(\omega) \propto \omega^{d-1}$$

"EXTENDED" PHONON MODES

VIBRATIONAL PROPERTIES OF GLASSES: NON PERIODIC, AMORPHOUS?

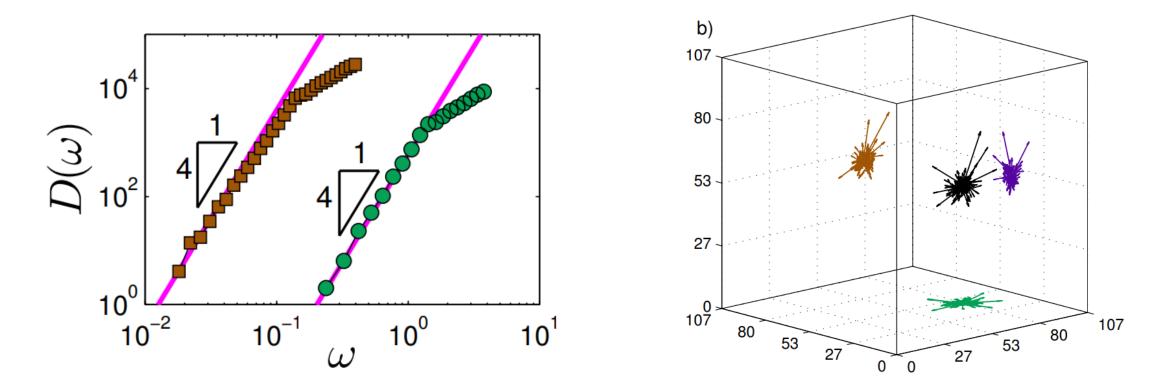
RECENT NUMERICAL STUDIES

 $D(\omega) = A\omega^{d-1}$

PHONON MODES PREDICTED BY THE DEBYE THEORY

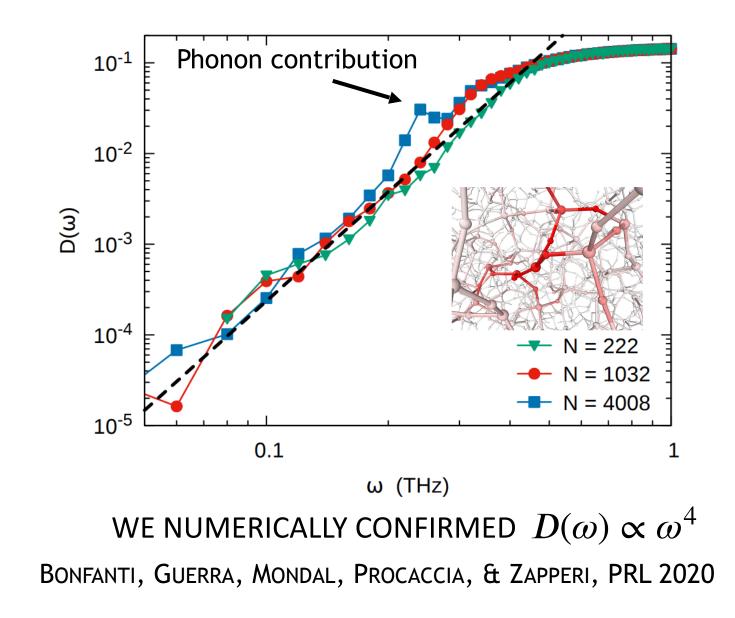
NON-PHONON MODES ORIGINATE FROM GLASSY CONFIGURATION

Lerner, During, and Bouchbinder, PRL 2016 Mizuno, Shiba, and Ikeda, PNAS 2017 Lerner, and Bouchbinder, J. Chem. Phys. 2021


HYBRIDIZATION OF MODES!

HOW TO DISENTANGLE PHONON MODES AND NON-PHONON MODES?

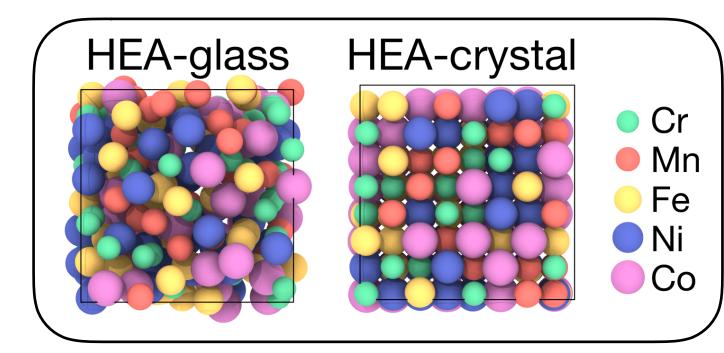
RECENT NUMERICAL STUDIES


LERNER, DURING, AND BOUCHBINDER, PRL 2016

THE LOWEST PHONON MODE SCALES WITH L^{-1}

THE NON-PHONON MODES ARE MAINLY OBSERVED IN SIMPLE POTENTIAL SYSTEMS. REALISTIC MODELS?

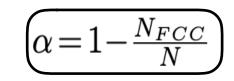
THE CASE OF SILICA GLASS

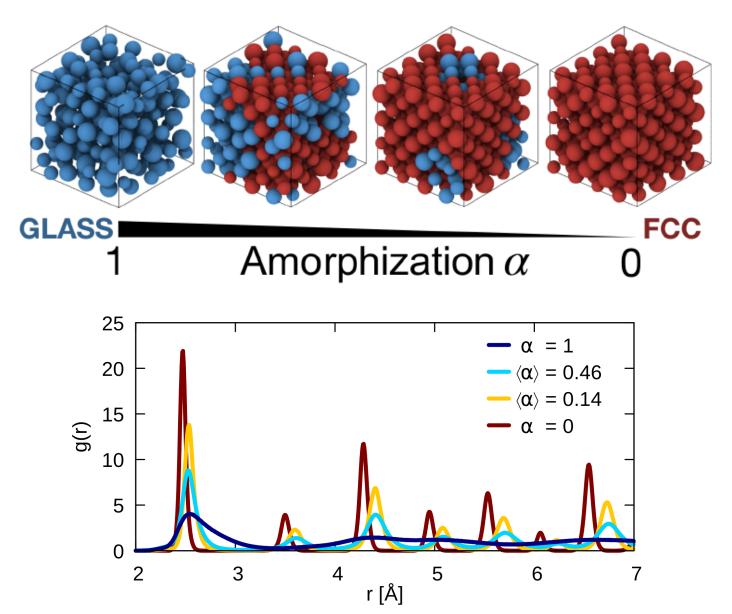


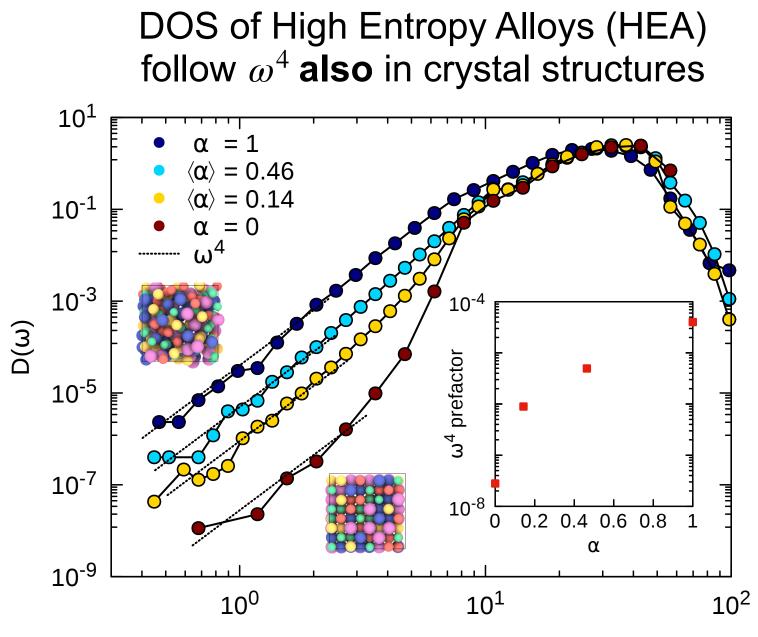
THE CASE OF HEAS WHAT IS THE ROLE OF [COMPOSITIONAL] DISORDER?

THE CASE OF HEAS WHAT IS THE ROLE OF [COMPOSITIONAL] DISORDER?

Model of disordered binary alloys: Lerner, and Bouchbinder, PRL 2022

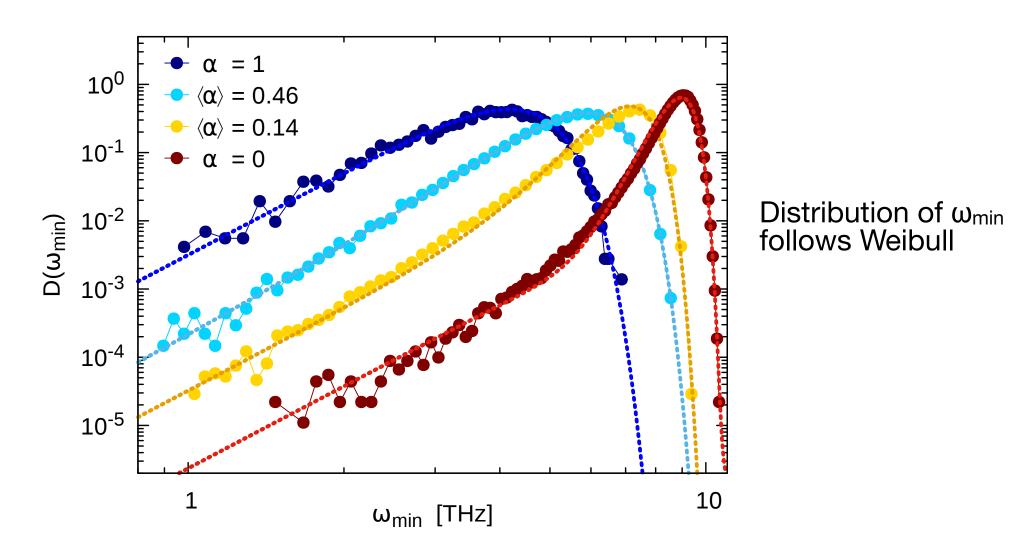

THE CASE OF HEAS WHAT IS THE ROLE OF [COMPOSITIONAL] DISORDER?

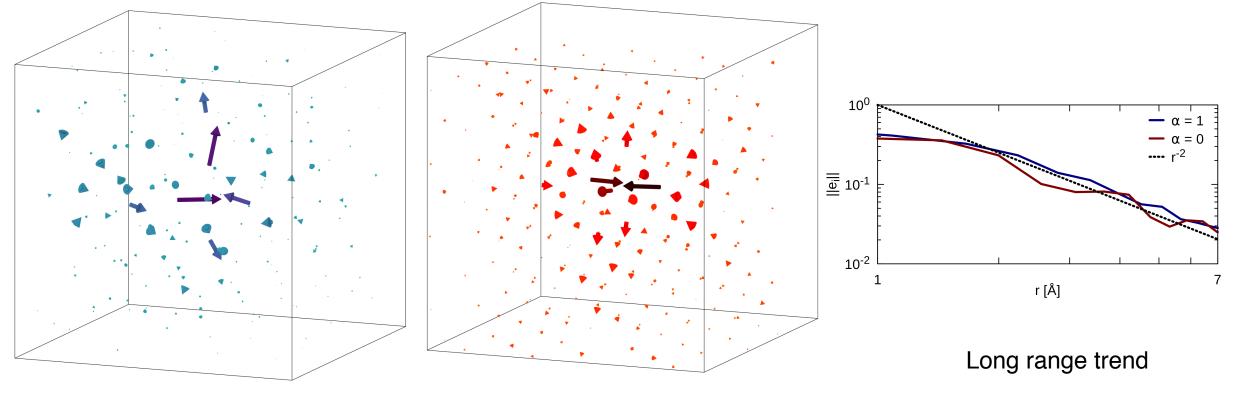



- CANTOR ALLOY
- REALISTIC POTENTIAL APPROPRIATE FOR METALLIC SYSTEMS: EAM POTENTIAL
- SMALL SYSTEM SIZE ~ 250 ATOMS
- VIBRATIONAL MODES CALCULATION:

$$H_{ij}^{\alpha\beta} \equiv \frac{1}{\sqrt{m_i m_j}} \frac{\partial^2 U(\boldsymbol{r}_1, \cdots \boldsymbol{r}_N)}{\partial r_i^{\alpha} \partial r_j^{\beta}}$$

ROLE OF DISORDER

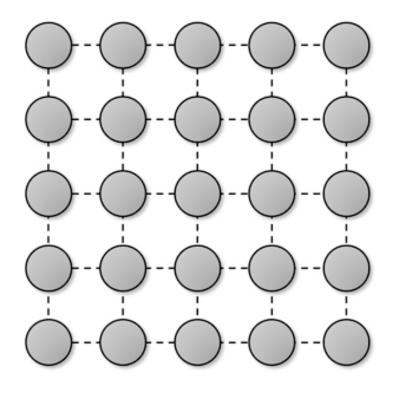




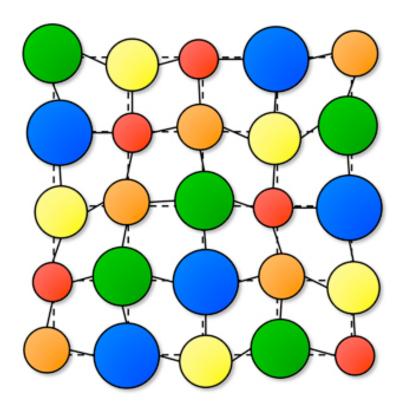
ω [THz]

MINIMUM EIGENFREQUENCY

MODES ARE LOCALIZED



HEA-CRYSTAL


HEA-GLASS

LATTICE DISTORSION

CONVENTIONAL ALLOYS

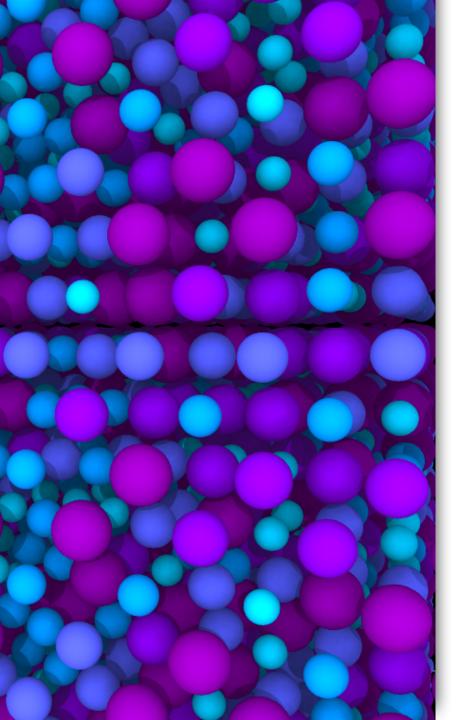
CRYSTALLINE HEAS

Condensed Matter > Disordered Systems and Neural Networks

[Submitted on 16 Mar 2023]

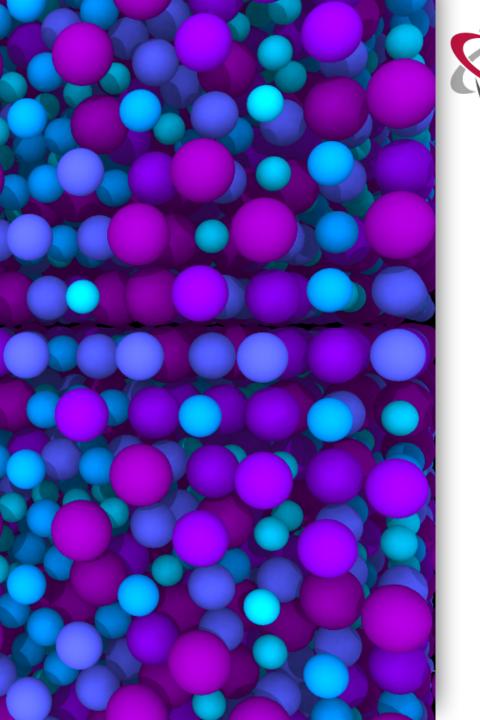
Quasi-localized modes in crystalline high entropy alloys

Silvia Bonfanti, Roberto Guerra, Rene Alvarez-Donado, Pawel Sobkowicz, Stefano Zapperi, Mikko Alava


High Entropy Alloys (HEAs) are designed by mixing multiple metallic species in nearly the same amount to obtain crystalline or amorphous materials with exceptional mechanical properties. Here we use molecular dynamics simulations to investigate the role of positional and compositional disorder in determining the low-frequency vibrational properties of CrMnFeCoNi HEAs. Our results show that the expected dependence of the density of states on the frequency as $D(\omega) \sim \omega^4$ is recovered for amorphous HEAs and is also observed for partially crystallized alloys with deviations that depend on the degree of crystallization. We find that the quasi-localized vibrations are still visible in crystalline HEAs, albeit suppressed compared to the corresponding amorphous alloys. Our work offers a unified perspective to describe HEA mechanical properties in terms of their vibrational density of states.

 Comments:
 8 pages, 7 figures

 Subjects:
 Disordered Systems and Neural Networks (cond-mat.dis-nn); Materials Science (cond-mat.mtrl-sci)


 Cite as:
 arXiv:2303.09161 [cond-mat.dis-nn]

 (or arXiv:2303.09161v1 [cond-mat.dis-nn] for this version)
 https://doi.org/10.48550/arXiv.2303.09161

FUTURE PERSPECTIVES

- CAN WE INDIRECTLY SPOT QLM IN EXPERIMENTS IN HEAS?
- RELATION WITH THE MECHANICAL PROPERTIES
 - LOW-FREQUENCY ENERGY BARRIERS TAKE PLACE WHERE THE MATERIAL BREAKS. HEAS?

Centre of Excellence in Multifunctional Materials for Industrial and Medical Applications

QUASI-LOCALIZED MODES IN CRYSTALLINE HIGH ENTROPY ALLOYS

Silvia Bonfanti NOMATEN

Interaction, Disorder, Elasticity workshop – École de Physique des Houches – April 2-7, 2023

