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Background

▶ Creep is the slow
deformation of a material
while subject to persistent
mechanical stress

In simulations:
▶ Instantaneously load the

sample to a (subcritical)
stress and keep it constant

In experiments:
▶ Quickly (in a few seconds)

ramp up the stress to a
(hopefully subcritical) level
and keep it constant
▶ PID controller

▶ Stress-stepping means
doing a creep experiment
at σ1 for T1, then
increasing the stress to σ2
for T2...

σ

t

σ1

σ2

σ3
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t1r t2r t3r

T1 T2 T3

▶ How do the previous steps
influence the creep
behavior?
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Background – creep

Stages of creep
▶ Primary creep ϵ̇ ∝ t−p

▶ p = 2/3 Andrade creep
▶ p = 1 logarithmic creep

(ϵ ∝ log t)

▶ Secondary creep
ϵ̇ = const
▶ Strain rate minima ϵ̇min

achieved

▶ Tertiary creep
ϵ̇ ∝ (tc − t)−α

▶ Strain rate diverges at
failure
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▶ Strain rate also depends
on the stress and
temperature

ϵ̇ ∝ σn exp

(
− E

kBT

)
t−p
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Background – phenomenological approaches

Time-hardening

ϵ̇ = ϵ̇(σ,T , t)

▶ The order of the loading
steps should not matter

Strain-hardening

ϵ̇ = ϵ̇(σ,T , ϵ)

▶ Not really useful for brittle
materials
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Experimental setup

▶ Creep compression
experiments on concrete [2]

▶ Acoustic emission
monitoring

▶ Ultrasonic tomography [3]
▶ ultrasonic pulses sent

from one array to another
▶ decrease in the

amplitude as a sign of
damage

compression piston
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[2] Mäkinen et al, PRMaterials 2023
[3] Tudisco et al, J. Acoust. Soc. Am. 2015
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Experimental results
▶ The creep rate is slower

when the sample has been
previously damaged
▶ Increases again close to

failure stress
▶ Material seems more

creep resistant than it
actually is

▶ The p exponent also
changes
▶ Linear decrease with σ

▶ We did a
unloading-reloading test
with the same stress for
each step

ϵ̇ = K
(t−tr+c)p
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Experimental results

▶ the number of acoustic
events n follows brittle
creep (ϵ̇ ∝ ṅ)

▶ Ultrasonic tomography
shows similar damage
behavior

D =
A − A0

A0
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Experimental results – acoustic emission energies

▶ No clear cutoff observed in
the distributions

[4] Vu et al, PRL 2019 ▶ Differs from monotonic
loading
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Mohr–Coulomb theory

▶ Geophysics model for
materials which have
far better compressive
strength than tensile
strength

τ = C + σn tanφ

▶ τ shear strength
▶ C cohesion
▶ σn normal stress
▶ φ angle of internal

friction

τ

σn

C

σ3 = 0 σ1 σmax

∆σ

φ

∆σ = C cosφ+
σ1 + σ3

2
sinφ−σ1 − σ3

2



"Interaction, Disorder, Elasticity"-workshop
Ecole de Physique, Les Houches, France, 3.4.2023

10/16

Kinetic Monte Carlo algorithm

▶ Sample is comprised of N
elementary volumes with
activation energies
Ei = ∆σiVa
▶ ∆σ Coulomb stress gap
▶ Va activation volume

▶ Activation rate given by an
Arrhenius expression

νi = ν0 exp

(
− Ei

kBT

)
▶ Each activation damages

an element by reducing its
Young’s modulus by 10 %

▶ Timestep drawn from
distribution

p(∆t) =
1

∆t0
exp

(
− ∆t
∆t0

)
▶ ∆t0 = (

∑
i νi)

−1

▶ Cohesion values Ci for
each elementary volume
are stochastic
▶ Microstructural disorder
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Simulation results

▶ KMC algorithm with a
progressive damage
model [5]

▶ For simplicity we start with
a uniform distribution of
cohesion values between 0
and Cmax

▶ Two step-loading, initial
step at σ/σc = 0.80
▶ Second with 0.85 or 0.95

[5] Amitrano et al, Geophys.
Res. Lett. 1999
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Excitation spectra

▶ Stochastic cohesion values
give rise to a distribution of
Coulomb stress gap values

▶ We interpret this as the
excitation spectra of the
sample
▶ The distribution of "the

distance to damage"
[6] Ovaska et al, PRL 2017
▶ Power-law behavior at low

values
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Evolution of the excitation spectra

▶ The small stress gap
values (easy-to-damage
sites) get depleted
▶ Aging-under-stress

▶ For the σ/σc = 0.85 step
there is almost no evolution

▶ Narrowing of the
distribution in the
σ/σc = 0.95 step
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Evolution of the excitation spectra – schematic

▶ From an initial distribution
the shape narrows during
primary creep as the small
values are exhausted

▶ Secondary creep
corresponds to a very
narrow distribution

▶ In tertiary creep the
distribution widens again
▶ General softening due to

damage accumulation

[7] Cottrell, J. Mech. Phys.
Solids 1952
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Summary

▶ We observe loading history
effects in the creep of a
disordered brittle material
(concrete)

▶ The behavior is more
complex than the
phenomenological models
in the literature suggest

▶ We interpret this as an
aging-under-stress
phenomenon where the
easy-to-damage sites are
exhausted

▶ The acoustic emission
behavior does not show a
clear cutoff
▶ differs from monotonic

loading

▶ the work is continued [8] in
collaboration with the
previous authors and
Mikko Alava
▶ go see the poster of

Juan Carlos Verano
Espitia

[8] Weiss & Amitrano,
PRMaterials 2023
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