## DISENTANGLING UNIVERSAL AND NON-UNIVERSAL BEHAVIORS OF DOMAIN WALLS IN THIN MAGNETS

# **Vincent Jeudy** Laboratoire de Physique des Solides Université Paris-Saclay, CNRS, France

#### **Collaborations with Argentina**

Javier Curiale, Sebastian Bustingorry, Alejandro Kolton ... (CONICET Bariloche, Argentina)

**Univ. Geneva** Nirvana Caballero, Thierry Giamarchi (Univ. Geneva, Switzerland)

# Idmag team: Laboratoire de Physique des Solides

André Thiaville, Stanislas Rohart, Alexandra Mougin, João Sampaio Lucas Albornoz, Pierre Géhanne, Rebeca Diaz-Pardo (UNAM, Mexico), Jon Gorchon (Institut Jean Lamour, CNRS), Williams Savero-Torres (ICN2, Catalogne), Jacques Ferré, Jean-Pierre Jamet



#### **Context: motion of magnetic textures as domain walls & Skyrmions**



# Potential application to magnetic data storageRequires high speed and controlled motion

 However, spin textures are very sensitive to weak pinning defects ⇒

> Strong reduction of the mobility, Stochastic avalanche-like motion...

# How to reduce and/or to control the pinning of magnetic texture?

- Engineering the pinning (annealing, irradiation...)
- Choice of weak pinning material...

## **Context: motion of pinned interfaces**



Domain walls in ferroelectric films

Domain walls in ferromagnetic films



Fluid impregnation



- Large variety of length scales and physical processes
- Present similar universal behaviors

How to identify universal behavior? How to distinguish non-universal behaviors?



Bacteria colonies



Fluid wetting

# **Context: disordered elastic systems**

#### Generic framework

Huse et al., PRL 54, 2708 (1985); Chauve et al., PRB 62, 10 (2000); Le Doussal et al. PRB 66, 174201 (2002)



DW roughness: self affinity  $u \sim L^{\zeta}$ Theoretical predictions for line moving in a 2d medium Critical exponents:  $\mu = \frac{1}{4}$ ,  $\beta = 0.25$ ,  $\psi = 0.15$ ,  $\zeta = \frac{2}{3}$ Scaling relation:  $\mu = \frac{2\zeta - 1}{2-\zeta}$ 

Minimal model (Edward-Wilkinson Eq.) overdamped motion of elastic objects  $\eta \frac{\partial u}{\partial t} = c \nabla^2 u + F_{pin}(u) + \zeta_{rt} + f$ Elasticity + pinning + noise + force velocity Creep  $\ln v \sim$ T=0 $v \sim (f - f_d)^{\beta}$ Depinning

To what extent minimal models can describe real physical systems? How could we go beyond critical exponent analysis?

#### **OUTLINE**

#### **1- INTRODUCTION TO DW STRUCTURE AND MOTION**

#### **2- ANALYSIS OF CRITICAL BEHAVIORS**

#### 3- BEYOND ZERO DRIVE LIMIT AND POWER LAW SCALING - Creep motion - Depinning transition

#### **4- MATERIAL DEPENDENT BEHAVIORS**

# What is a magnetic domain wall?



Perpendicular magnetic anisotropy In domains, the magnetization  $M_s$  is fixed.

Domain wall: region of magnetization reversal between domains

→ Domain B

- Competition between
  - A: strength of interaction between magnetic moments

Easy direction

- *K*: anisotropy => easy magnetization directions
- DW surface energy:  $\sigma = 4\sqrt{AK}$  (Bloch wall)

-Bloch wall-

- DW thickness:  $\Delta \sim \sqrt{\frac{A}{K}} \approx 1 30nm$
- Origin of pinning: fluctuations of K, of  $M_s$ ?

## **Flow regimes of domain walls**

DW dynamics described by LLG Eq. :  $\frac{d\vec{M}}{dt} = -\gamma \vec{M} \wedge \mu_0 \vec{H}_{eff} + \alpha \frac{\vec{M}}{M} \wedge \frac{d\vec{M}}{dt}$  Schryer and Walker, J. Appl. Phys. 45, 5406 (1974).



(Ga,Mn)As 50nm thick film A. Dourlat *et al.*, PRB **78**, 161303R (2008)

- Dynamics is controlled by dissipation

- Depends on the time evolution of DW magnetic texture (steady and precessional regimes)





For most of the materials, low drive regimes are hidden by DW pinning



#### **OUTLINE**

#### **1- INTRODUCTION TO DW STRUCTURE AND MOTION**

#### **2- ANALYSIS OF CRITICAL BEHAVIORS**

#### 3- BEYOND ZERO DRIVE LIMIT AND POWER LAW SCALING - Creep motion - Depinning transition

#### **4- MATERIAL DEPENDENT BEHAVIORS**

#### **Connections of DW motion with creep theory**



#### Power law analysis: dimensional cross over

Is there a thickness limit for the d=1 behavior of DW?



(Ga,Mn)As films with  $\neq$  thicknesses: t = 12.5 nm, 50nm, & 80 nm

A. Kolton et al., Phys. Rev. B 79, 184207 (2009)



Nuclei for DW jumps:  $L_{opt} \sim H^{-1/(2-\zeta_{eq})} \searrow$  for  $H \nearrow$ Low drive  $L_{opt} > t$ : DW  $\Leftrightarrow$  line High drive  $L_{opt} < t$ :DW  $\Leftrightarrow$  surface

- Double signature of a cross over: jump of the roughness and kink in the velocity curves Low drive  $\zeta_{1d} \approx 0.62$ ,  $\mu \approx 1/4$ : DW  $\Leftrightarrow$  line in 2D medium High drive  $\zeta_{2d} \approx 0.45$ ,  $\mu \approx 1/2$ :DW  $\Leftrightarrow$  surface in 3D medium

#### DW motion in tracks: contribution of edge pinning



Signature of different universality classes for current and field driven

DuttaGupta et al. Nat. Phys. 12, 333 (2016)

Current driven motion

Fit:  $v \sim exp - \left(\frac{\Delta E}{k_B T}\right)$  with  $\Delta E \sim f^{-\mu}$  (only 2 -6 orders of magnitude, while 11 orders for Lemerle et al.)  $\Rightarrow \mu_H = 0.23 \pm 0.07 \approx 1/4 \text{ and } \mu_i = 0.39 \pm 0.06$ 

#### Different analysis (controversy)

- $\mu_H \neq \mu_i \Rightarrow$  different universality classes?
- For Pt/Co/Pt,  $\mu_i = 1/4$  Lee et al., Phys. Rev. Lett. **107**, 067201 (2011)  $\Rightarrow \mu_i$  depends on the material?
- Bending and tilting of domain wall: contribution of wire edge pinning?

#### DW motion in tracks: contribution of edge pinning



Contributions of wire edge pinning?

#### **OUTLINE**

**1- INTRODUCTION TO DW STRUCTURE AND MOTION** 

**2- ANALYSIS OF CRITICAL BEHAVIORS** 

#### **3- BEYOND ZERO DRIVE LIMIT AND POWER LAW SCALING** - Creep motion - Depinning transition

**4- MATERIAL DEPENDENT BEHAVIORS** 

#### **Open questions**



Extension of universal behaviors beyond the zerodrive limit?

Nature of domain wall dynamics: creep, TAFF... depinning, crossover to the flow?

Universality of the depinning transition?

## Thermal studies of the creep motion

300K Pt/(Co 0.45nm)/Pt 200K 120 150K 100K 50K 90 v(m/s)60 30 0 1000 1500 500 0 H (Oe)

How to distinguish different dynamical regimes?

J. Gorchon et al., PRL 113, 027205 (2014)

Thermal studies:

- Variations of the thermal activation:  $k_B T$ 

- Fixed frozen disorder

- but also, variations of magnetic properties: Magnetization  $M_s$ , DW energy  $\sigma$ , thickness  $\Delta$ .

- $T \searrow \Rightarrow$  shifts of the curves towards the high field region.
- Boundaries between different regimes ?

#### Thermal studies of the creep motion



Shape of velocity curves compatible with available predictions?

Creep:  $H < H_{C-T}$ 

$$v_{creep}(H,T) = v_{creep}^{0}(T) e^{-\frac{T_d}{T} \left(\frac{H}{H_d}\right)^{-1/2}}$$

**TAFF**:  $H_{C-T} < H < H_d$  $v_{TAFF}(H,T) = v_{TAFF}^0(T) e^{-\frac{T_d}{T} \left(1 - \frac{H}{H_d}\right)}$ 

Thermally Activated Flux Flow P.W. Anderson and Y.B. Kim, Rev. Mod. Phys. (1964) Other interpretation: Caballero et al. Phys. Rev. B **96**, 224422 (2017)

Depinning:  $H \ge H_d$ Flow:  $H \gg H_d$ 

Introduction of temperature dependent parameters:  $T_d(T)$ ,  $v_{creep}^0(T)$ ,  $v_{TAFF}^0(T)$ ,  $H_d(T)$ ,  $H_{C-T}(T)$ .

#### **Thermal studies of the creep motion**

Is the prefactor of the creep law temperature independent?



Expected:  $v_{creep}^0 \sim \xi/\tau$  weakly dependent on temperature While, we observe:  $v_{creep}^0 \sim e^{\frac{T_d}{T}}$ ?  $\Rightarrow$  The scaling  $\ln v \sim H^{-1/4}$  does not describe correctly  $v_{creep}(H,T)$ 

**Effective pinning barrier**:

$$v_{creep}(H,T) \sim e^{-\frac{\Delta E}{k_B T}}$$
 with  $\Delta E \approx k_B T_d \left( \left[ \frac{H}{H_d} \right]^{-1/4} - 1 \right)$ 

Boundaries of the creep regime:  $H \to 0 \implies \Delta E \sim k_B T_d \left[\frac{H}{H_d}\right]^{-1/4} \text{ and } H \to H_d \implies \Delta E \to 0$ 

 $\Rightarrow$  Universal variation of the reduced energy barrier  $\frac{\Delta E}{kT_d}$  with the reduced drive  $\frac{H}{H_d}$ 

#### **Evidencing universal creep behavior**

How to evidence a universal behavior of the creep motion?

Different materials, large temperature range: T = 10 - 315K



Universal behaviors: all the velocity curves have to collapse on a single master curve.

Jeudy et al., PRL 117, 057201 (2016)

#### **Evidencing universal creep behavior**

#### Jeudy et al., PRL 117, 057201 (2016)



#### **Evidencing universal creep behavior: the universal barrier function**



Jeudy et al., PRL 117, 057201 (2016)

• The exponent ( $\mu = 1/4$ ) describes the whole creep motion up to the depinning transition.

• Close to H = 0, Agreement with the prediction  $\Delta E \sim H^{-1/4}$ 

 Close to H<sub>d</sub>,
 The TAFF regime is part of the creep motion.
 Agreement numerical simulations Kolton et al., PRB 79, 184207 (2009)

The creep motion can be described by

- a universal barrier function and
- 3 non-universal parameters :  $H_d$ ,  $v(H_d)$ , and  $T_d$

#### **OUTLINE**

**1- INTRODUCTION TO DW STRUCTURE AND MOTION** 

**2- ANALYSIS OF CRITICAL BEHAVIORS** 

3- BEYOND ZERO DRIVE LIMIT AND POWER LAW SCALING
 - Creep motion
 - Depinning transition

**4- MATERIAL DEPENDENT BEHAVIORS** 

#### **Depinning transition: thermal studies**



Does the depinning transition present universal behaviors? Contribution of DW magnetic texture? Diaz Pardo *et al.*, PRB **95**, 184434 (2017)

Predictions:  $f \ge f_d$ for  $f = f_d$ ,  $v \sim T^{\psi}$  with  $\psi = 0.15$ for T = 0K,  $v \sim (f - f_d)^{\beta}$  with  $\beta = 0.25$ 

Le Doussal *et al.*, PRB 66, 174201 (2002) Bustingorry *et al.*, EPL 81, 26005 (2008) Bustingorry *et al.*, PRE 85, 021144 (2012) Bustingorry *et al.*, PRB 85, 214416 (2012)

Introduction of non-universal parameters for  $H = H_d$ ,  $v(H_d, T) = v_T(H_d, T) \cdot \left(\frac{T}{T_d}\right)^{\psi}$ for T = 0K,  $v(H, T) = v_H(H_d, T) \left(\frac{H-H_d}{H_d}\right)^{\beta}$ Compatibility with experimental results ? Meaning of  $v_T$  and  $v_H$ ?



At the depinning transition  $H = H_d$ :  $v_T(H_d, T) = v(H_d, T) \cdot \left(\frac{T_d}{T}\right)^{\psi}$ , with  $\psi$ =0.15

Meaning of the depinning velocity  $v_T$ ?

 $v_T$  coincides with the extrapolation of the flow regime  $\Rightarrow v_T$  is the flow velocity DW would have without pinning.





Above the depinning transition:  $H > H_d$   $v(H, T \to 0K) = v_H (H_d, T) \left(\frac{H-H_d}{H_d}\right)^{\beta}$ , with  $\beta$ =0.25  $\Rightarrow$  agreement with a segment of curves

Meaning of  $v_H$ ? Is  $v_H$  an extra non-universal parameter?

We introduce the ratio  $x_0 = \frac{v_T}{v_H}$ : How does  $x_0$  vary with  $H_d$  and T?















The ratio  $x_0 = \frac{v_T(T)}{v_H(T)} = 0.65 \pm 0.02$ is independent of - temperature (8 <  $\frac{T_d}{T}$ <160) and - magnetic material.

 $\Rightarrow x_0 \text{ is a universal metric factor.}$ (not predicted)

Consequence Only 3 pinning parameters are controlling the depinning transition:  $T_d(T)$ ,  $H_d(T)$ , and  $v_T(H_d, T)$ 

Boundaries of the depinning transition?



#### **Upper limit:**

- Divergence between experimental results and the power law scaling  $v \sim (H - H_d)^{\beta}$ :  $H = H_u$ - For  $H < H_u$ , DW motion is independent of its texture - For  $H \ge H_u$ , DW motion is probably not universal

#### Lower limit:

 $H_d$ : lower (upper) boundary of the depinning (creep). No crossover between creep and depinning

Universal function accounting for T and field effects?



#### Two regimes of the depinning transition:

- Close to  $H_d$ , combined thermal and drive effects. - Close to  $H_u$ , athermal behavior.

Universal function: rescaling the velocity curves - Scaled field:  $x = \left(\frac{H-H_d}{H_d}\right)^{\beta} \left(\frac{T}{T_d}\right)^{-\psi}$ - Scaled velocity:  $y = \frac{\nu(H,T)}{\nu_T} \left(\frac{T}{T_d}\right)^{-\psi}$ 



Universal depinning function Shape  $\approx$  two asymptotic behaviors: - for x < 0.4,  $\mathbf{y} \approx \mathbf{1} = \frac{\nu(H,T)}{\nu_T(T)} \left(\frac{T}{T_d}\right)^{-\psi}$ - for x > 0.8,  $\mathbf{y} \approx \frac{x}{x_0} = \frac{1}{x_0} \left(\frac{H-H_d}{H_d}\right)^{\beta} \left(\frac{T}{T_d}\right)^{-\psi}$ 

Contribution of thermal effects limited to a narrow range x < 0.8. For  $\frac{T_d}{T} \approx 10 - 100$ :  $\frac{H - H_d}{H_d} \le 3 - 10\%$ 

**Upper limit**  $x(H = H_u)$  is material and temperature dependent.

A close look at the thermal rounding of the depinning transition.



#### The creep and depinning regimes



Non-universal and universal behaviors can be disentangled.

- universal functions describe the creep and the depinning transition
- material depend parameters: barrier height  $k_B T_d$ , depinning field  $H_d$  and velocity  $v_T$

#### **OUTLINE**

**1- INTRODUCTION TO DW STRUCTURE AND MOTION** 

**2- ANALYSIS OF CRITICAL BEHAVIORS** 

# 3- BEYOND ZERO DRIVE LIMIT AND POWER LAW SCALING Creep motion Depinning transition

#### **4- MATERIAL DEPENDENT BEHAVIORS**

#### **Pinning dependent parameters**

#### Maps of the pinning parameters



**New :** Quantitative comparison of the contribution of pinning to DW dynamics in different materials **Open questions** 

- Physical meaning of the pinning dependent parameters :  $H_d$ ,  $v_T$ ,  $T_d$ ?
- How do they reflect the interaction between DW and disorder?

#### **Energetic of a DW in a disordered medium**



#### **Energy contributions**:

For a small displacement *u* of a segment of length *L*:

- Elastic energy:  $\Delta F_{el} \sim \sigma t \frac{u^2}{L}$
- Pinning energy:  $\Delta F_{pin} \sim \xi f_{pin} \sqrt{n\xi L}$ pinning range:  $\xi$  and strength  $f_{pin}$
- Zeeman energy:  $\Delta F_Z \sim -2\mu_0 M_S H_z t L u$



Lemerle *et al.*, PRL **80**, 849 (1998)

#### **Scaling arguments for the depinning:**

- The depinning ( $H = H_d$ ) occurs when a rigid segment ( $L \approx L_c$ ) can displaced over the distance  $u \approx \xi$ 

- At the depinning,  $\Delta F_{el} \sim \Delta F_{pin} \sim -\Delta F_Z$  with  $\Delta F_{pin} \approx k_B T_d$ 

#### ⇒DW-disorder interaction

- Range:  $\xi \sim [(k_B T_d)^2 / (2M_s H_d \sigma t^2)]^{1/3}$ 

- Strength:

$$f_{pin} \sim \frac{1}{\xi \sqrt{n}} \sqrt{2H_d M_s t k_B T_d}$$
 (scaling relations)

Jeudy *et al.*, PRB **98**, 054406 (2018)

#### More accurate model: Agoritsas et al. PRE **87**, 042406 (2013)

#### Methods

DW dynamics  $\rightarrow k_B T_d$ ,  $H_d$ Measured micromagnetic parameters and model  $\rightarrow M_s$ ,  $\sigma$ ,  $\Delta$ 

 $\Rightarrow$  interaction between DW and disorder:  $\xi$ ,  $f_{pin}$ 

#### Exploring the domain wall pinning range: $\xi$

Fixed disorder, an in-plane field modifies the DW texture ( $\Delta$  and  $\sigma$ )



The correlation between the variations of the pinning range  $\xi(H_x)$  and of  $\Delta(H_x)$  suggests that  $b < \xi \sim \Delta$ .

P. Gehanne et al., Phys. Rev. Res. 2, 043134 (2020)

# **Domain wall pinning strength:** *f*<sub>pin</sub>



Comparison between the pinning strength  $f_{pin}$  and the DW energy  $\sigma$ 

The better correlations obtained for  $\xi$  indep. of *b* suggest:  $b < \xi \sim \Delta$  and  $f_{pin} \propto \sigma$ . Different from the relation:  $b \sim \xi$  assumed since Lemerle *et al.*, PRL (1998). Results are not compatible with the assumption  $k_B T_d H_d^{\frac{1}{4}} \sim \sigma^{1/4}$  of Je *et al.* PRB **88**, 214401 (2013)

#### **Engineering DW pinning with light He+ ion irradiation**

Origin of the variations of DW dynamics due to light He+ ion irradiations?

Balan *et al.*, arXiv:2303.04577 van Der Jagt et al., Phys. Rev. Appl. (2022)



irradiation  $\Rightarrow$  rearrangements of atoms over inter-atomic distances

Correlation between  $\Delta$  and the pinning range  $\xi \Rightarrow$ 

Chappert *et al.*, Science (1998):

The change of DW speed is essentially due to the variation of DW magnetic texture and not by a change of the disorder.

#### CONCLUSIONS

#### **Disentangling universal and non-universal behaviors**

- is essentially based on the analysis of experimental results with power law predictions
- requires to introduce material dependent parameters and to analyse their meaning
- requires a careful determination of the boundaries between dynamical regimes.

A tentative minimalist "experimental" definition of a universal behavior could be: independent of temperature, material, and compatible with some predictions of minimal models... all this over the largest possible ranges.

#### Accessing to non-universal behaviors

- allows to classify quantitatively different materials (depinning force, velocity and T)
- opens the discussion of the interaction between interface and weak disorder.

Results obtained for domain walls in ferromagnets should be valid for other systems described by the quenched- Edward-Wilkinson model.